|
a |
|
b/fetal_net/preprocess.py |
|
|
1 |
from scipy import ndimage |
|
|
2 |
import numpy as np |
|
|
3 |
|
|
|
4 |
|
|
|
5 |
def norm_minmax(d): |
|
|
6 |
return -1 + 2 * (d - d.min()) / (d.max() - d.min()) |
|
|
7 |
|
|
|
8 |
|
|
|
9 |
def laplace(d): |
|
|
10 |
return ndimage.laplace(d) |
|
|
11 |
|
|
|
12 |
|
|
|
13 |
def laplace_norm(d): |
|
|
14 |
return norm_minmax(laplace(d)) |
|
|
15 |
|
|
|
16 |
|
|
|
17 |
from scipy.ndimage import gaussian_gradient_magnitude |
|
|
18 |
def grad(d): |
|
|
19 |
return gaussian_gradient_magnitude(d, sigma=(1,1,1)) |
|
|
20 |
#grads = np.zeros_like(d) |
|
|
21 |
#for a in range(d.squeeze().ndim): |
|
|
22 |
# grads += np.power(ndimage.sobel(d.squeeze(), axis=a), 2) |
|
|
23 |
#return np.sqrt(grads) |
|
|
24 |
|
|
|
25 |
|
|
|
26 |
def grad_norm(d): |
|
|
27 |
return norm_minmax(grad(d)) |