Switch to unified view

a b/fetal_net/model/unet3d/isensee2017.py
1
from functools import partial
2
3
from keras.layers import Input, LeakyReLU, Add, UpSampling3D, Activation, SpatialDropout3D, Conv3D
4
from keras.engine import Model
5
from keras.optimizers import Adam
6
7
from .unet import create_convolution_block, concatenate
8
from ...metrics import weighted_dice_coefficient_loss, vod_coefficient, dice_coefficient_loss, dice_coefficient
9
10
import numpy as np
11
12
create_convolution_block = partial(create_convolution_block, activation=LeakyReLU, instance_normalization=True)
13
14
15
def isensee2017_model_3d(input_shape=(1, 128, 128, 128), n_base_filters=16, depth=5, dropout_rate=0.3,
16
                         n_segmentation_levels=1, n_labels=1, optimizer=Adam, initial_learning_rate=5e-4,
17
                         loss_function=dice_coefficient_loss, activation_name="sigmoid", mask_shape=None,
18
                         **kargs):
19
    """
20
    This function builds a model proposed by Isensee et al. for the BRATS 2017 competition:
21
    https://www.cbica.upenn.edu/sbia/Spyridon.Bakas/MICCAI_BraTS/MICCAI_BraTS_2017_proceedings_shortPapers.pdf
22
23
    This network is highly similar to the model proposed by Kayalibay et al. "CNN-based Segmentation of Medical
24
    Imaging Data", 2017: https://arxiv.org/pdf/1701.03056.pdf
25
26
27
    :param input_shape:
28
    :param n_base_filters:
29
    :param depth:
30
    :param dropout_rate:
31
    :param n_segmentation_levels:
32
    :param n_labels:
33
    :param optimizer:
34
    :param initial_learning_rate:
35
    :param loss_function:
36
    :param activation_name:
37
    :return:
38
    """
39
    inputs = Input(input_shape)
40
41
    current_layer = inputs
42
    level_output_layers = list()
43
    level_filters = list()
44
    for level_number in range(depth):
45
        n_level_filters = (2 ** level_number) * n_base_filters
46
        level_filters.append(n_level_filters)
47
48
        if current_layer is inputs:
49
            in_conv = create_convolution_block(current_layer, n_level_filters)
50
        else:
51
            in_conv = create_convolution_block(current_layer, n_level_filters, strides=(2, 2, 2))
52
53
        context_output_layer = create_context_module(in_conv, n_level_filters, dropout_rate=dropout_rate)
54
55
        summation_layer = Add()([in_conv, context_output_layer])
56
        level_output_layers.append(summation_layer)
57
        current_layer = summation_layer
58
59
    segmentation_layers = list()
60
    for level_number in range(depth - 2, -1, -1):
61
        up_sampling = create_up_sampling_module(current_layer, level_filters[level_number])
62
        concatenation_layer = concatenate([level_output_layers[level_number], up_sampling], axis=1)
63
        localization_output = create_localization_module(concatenation_layer, level_filters[level_number])
64
        current_layer = localization_output
65
        if level_number < n_segmentation_levels:
66
            segmentation_layers.insert(0, Conv3D(n_labels, (1, 1, 1))(current_layer))
67
68
    output_layer = None
69
    for level_number in reversed(range(n_segmentation_levels)):
70
        segmentation_layer = segmentation_layers[level_number]
71
        if output_layer is None:
72
            output_layer = segmentation_layer
73
        else:
74
            output_layer = Add()([output_layer, segmentation_layer])
75
76
        if level_number > 0:
77
            output_layer = UpSampling3D(size=(2, 2, 2))(output_layer)
78
79
    activation_block = Activation(activation_name)(output_layer)
80
81
    metrics = ['binary_accuracy', vod_coefficient]
82
    if loss_function != dice_coefficient_loss:
83
        metrics += [dice_coefficient]
84
85
    if mask_shape is not None:
86
        mask_input = Input(shape=mask_shape)
87
        inputs = [inputs, mask_input]
88
        loss_function = loss_function(mask_input)
89
90
    model = Model(inputs=inputs, outputs=activation_block, name='isensee2017_3d_Model_'+str(np.random.random()))
91
    model.compile(optimizer=optimizer(lr=initial_learning_rate), loss=loss_function, metrics=metrics)
92
    return model
93
94
95
def create_localization_module(input_layer, n_filters):
96
    convolution1 = create_convolution_block(input_layer, n_filters)
97
    convolution2 = create_convolution_block(convolution1, n_filters, kernel=(1, 1, 1))
98
    return convolution2
99
100
101
def create_up_sampling_module(input_layer, n_filters, size=(2, 2, 2)):
102
    up_sample = UpSampling3D(size=size)(input_layer)
103
    convolution = create_convolution_block(up_sample, n_filters)
104
    return convolution
105
106
107
def create_context_module(input_layer, n_level_filters, dropout_rate=0.3, data_format="channels_first"):
108
    convolution1 = create_convolution_block(input_layer=input_layer, n_filters=n_level_filters)
109
    dropout = SpatialDropout3D(rate=dropout_rate, data_format=data_format)(convolution1)
110
    convolution2 = create_convolution_block(input_layer=dropout, n_filters=n_level_filters)
111
    return convolution2