[ccb1dd]: / fetal_net / model / unet / unet.py

Download this file

142 lines (121 with data), 7.0 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
from imp import reload
import numpy as np
from keras import backend as K
from keras.engine import Input, Model
from keras.layers import Conv2D, MaxPooling2D, UpSampling2D, Activation, BatchNormalization, PReLU, Deconvolution2D, \
Permute, SpatialDropout2D, Add
from keras.optimizers import Adam
from ...metrics import dice_coefficient_loss, dice_coefficient, vod_coefficient, \
vod_coefficient_loss
K.set_image_data_format("channels_last")
reload(K)
try:
from keras.engine import merge
except ImportError:
from keras.layers.merge import concatenate
def unet_model_2d(input_shape, pool_size=(2, 2), n_labels=1, initial_learning_rate=0.00001, deconvolution=False,
depth=4, n_base_filters=32, include_label_wise_dice_coefficients=False,
batch_normalization=False, activation_name="sigmoid", loss_function=dice_coefficient_loss,
dropout_rate=0, **kargs):
"""
Builds the 3D UNet Keras model.f
:param metrics: List metrics to be calculated during model training (default is dice coefficient).
:param include_label_wise_dice_coefficients: If True and n_labels is greater than 1, model will report the dice
coefficient for each label as metric.
:param n_base_filters: The number of filters that the first layer in the convolution network will have. Following
layers will contain a multiple of this number. Lowering this number will likely reduce the amount of memory required
to train the model.
:param depth: indicates the depth of the U-shape for the model. The greater the depth, the more max pooling
layers will be added to the model. Lowering the depth may reduce the amount of memory required for training.
:param input_shape: Shape of the input data (n_chanels, x_size, y_size, z_size). The x, y, and z sizes must be
divisible by the pool size to the power of the depth of the UNet, that is pool_size^depth.
:param pool_size: Pool size for the max pooling operations.
:param n_labels: Number of binary labels that the model is learning.
:param initial_learning_rate: Initial learning rate for the model. This will be decayed during training.
:param deconvolution: If set to True, will use transpose convolution(deconvolution) instead of up-sampling. This
increases the amount memory required during training.
:return: Untrained 3D UNet Model
"""
metrics = ['binary_accuracy', vod_coefficient]
if loss_function != dice_coefficient_loss:
metrics += [dice_coefficient]
inputs = Input(input_shape)
inputs_p = Permute((3, 1, 2))(inputs)
current_layer = inputs_p
levels = list()
# add levels with max pooling
for layer_depth in range(depth):
input_layer = current_layer
layer1 = create_convolution_block(input_layer=current_layer, n_filters=n_base_filters * (2 ** layer_depth),
batch_normalization=batch_normalization)
if dropout_rate > 0:
layer1 = SpatialDropout2D(rate=dropout_rate)(layer1)
current_layer = create_convolution_block(input_layer=layer1, n_filters=n_base_filters * (2 ** layer_depth) * 2,
batch_normalization=batch_normalization)
levels.append(current_layer)
if layer_depth < depth - 1:
current_layer = MaxPooling2D(pool_size=pool_size)(current_layer)
# add levels with up-convolution or up-sampling
for layer_depth in range(depth - 2, -1, -1):
up_convolution = get_up_convolution(pool_size=pool_size, deconvolution=deconvolution,
n_filters=current_layer._keras_shape[1])(current_layer)
concat = concatenate([up_convolution, levels[layer_depth]], axis=1)
current_layer = create_convolution_block(n_filters=levels[layer_depth]._keras_shape[1],
input_layer=concat, batch_normalization=batch_normalization)
if dropout_rate > 0:
current_layer = SpatialDropout2D(rate=dropout_rate)(current_layer)
current_layer = create_convolution_block(n_filters=levels[layer_depth]._keras_shape[1],
input_layer=current_layer,
batch_normalization=batch_normalization)
final_convolution = Conv2D(n_labels, (1, 1))(current_layer)
act = Activation(activation_name)(final_convolution)
act = Permute((2, 3, 1))(act)
model = Model(inputs=inputs, outputs=act)
model.compile(optimizer=Adam(lr=initial_learning_rate), loss=loss_function, metrics=metrics)
return model
def create_convolution_block(input_layer, n_filters, batch_normalization=False, kernel=(3, 3), activation=None,
padding='same', strides=(1, 1), instance_normalization=False):
"""
:param strides:
:param input_layer:
:param n_filters:
:param batch_normalization:
:param kernel:
:param activation: Keras activation layer to use. (default is 'relu')
:param padding:
:return:
"""
layer = Conv2D(n_filters, kernel, padding=padding, strides=strides)(input_layer)
if batch_normalization:
layer = BatchNormalization(axis=1)(layer)
elif instance_normalization:
try:
from keras_contrib.layers.normalization import InstanceNormalization
except ImportError:
raise ImportError("Install keras_contrib in order to use instance normalization."
"\nTry: pip install git+https://www.github.com/farizrahman4u/keras-contrib.git")
layer = InstanceNormalization(axis=1)(layer)
if activation is None:
layer = Activation('relu')(layer)
else:
layer = activation()(layer)
return layer
def compute_level_output_shape(n_filters, depth, pool_size, image_shape):
"""
Each level has a particular output shape based on the number of filters used in that level and the depth or number
of max pooling operations that have been done on the data at that point.
:param image_shape: shape of the 3d image.
:param pool_size: the pool_size parameter used in the max pooling operation.
:param n_filters: Number of filters used by the last node in a given level.
:param depth: The number of levels down in the U-shaped model a given node is.
:return: 5D vector of the shape of the output node
"""
output_image_shape = np.asarray(np.divide(image_shape, np.power(pool_size, depth)), dtype=np.int32).tolist()
return tuple([None, n_filters] + output_image_shape)
def get_up_convolution(n_filters, pool_size, kernel_size=(2, 2), strides=(2, 2),
deconvolution=False):
if deconvolution:
return Deconvolution2D(filters=n_filters, kernel_size=kernel_size,
strides=strides)
else:
return UpSampling2D(size=pool_size)