Switch to unified view

a b/fetal_net/model/unet/isensee.py
1
from functools import partial
2
3
from keras.layers import Input, Add, UpSampling2D, Activation, SpatialDropout2D, Conv2D, Permute, LeakyReLU
4
from keras.engine import Model
5
from keras.optimizers import Adam
6
7
from .unet import create_convolution_block, concatenate
8
from ...metrics import weighted_dice_coefficient_loss, dice_coefficient_loss, vod_coefficient_loss, dice_coefficient, \
9
    vod_coefficient
10
11
create_convolution_block = partial(create_convolution_block, activation=LeakyReLU, instance_normalization=True)
12
13
14
def isensee2017_model(input_shape=(4, 128, 128, 128), n_base_filters=16, depth=5, dropout_rate=0.3,
15
                      n_segmentation_levels=3, n_labels=1, optimizer=Adam, initial_learning_rate=5e-4,
16
                      loss_function=dice_coefficient_loss, activation_name="sigmoid", summation=False, **kargs):
17
    """
18
    This function builds a model proposed by Isensee et al. for the BRATS 2017 competition:
19
    https://www.cbica.upenn.edu/sbia/Spyridon.Bakas/MICCAI_BraTS/MICCAI_BraTS_2017_proceedings_shortPapers.pdf
20
    This network is highly similar to the model proposed by Kayalibay et al. "CNN-based Segmentation of Medical
21
    Imaging Data", 2017: https://arxiv.org/pdf/1701.03056.pdf
22
    :param input_shape:
23
    :param n_base_filters:
24
    :param depth:
25
    :param dropout_rate:
26
    :param n_segmentation_levels:
27
    :param n_labels:
28
    :param optimizer:
29
    :param initial_learning_rate:
30
    :param loss_function:
31
    :param activation_name:
32
    :return:
33
    """
34
    metrics = ['binary_accuracy', vod_coefficient]
35
    if loss_function != dice_coefficient_loss:
36
        metrics += [dice_coefficient]
37
38
    inputs = Input(input_shape)
39
    inputs_p = Permute((3, 1, 2))(inputs)
40
    current_layer = inputs_p
41
    level_output_layers = list()
42
    level_filters = list()
43
    for level_number in range(depth):
44
        n_level_filters = (2 ** level_number) * n_base_filters
45
        level_filters.append(n_level_filters)
46
47
        if current_layer is inputs_p:
48
            in_conv = create_convolution_block(current_layer, n_level_filters)
49
        else:
50
            in_conv = create_convolution_block(current_layer, n_level_filters, strides=(2, 2))
51
52
        context_output_layer = create_context_module(in_conv, n_level_filters, dropout_rate=dropout_rate)
53
54
        summation_layer = Add()([in_conv, context_output_layer])
55
        level_output_layers.append(summation_layer)
56
        current_layer = summation_layer
57
58
    segmentation_layers = list()
59
    for level_number in range(depth - 2, -1, -1):
60
        up_sampling = create_up_sampling_module(current_layer, level_filters[level_number])
61
        concatenation_layer = concatenate([level_output_layers[level_number], up_sampling], axis=1)
62
        localization_output = create_localization_module(concatenation_layer, level_filters[level_number])
63
        current_layer = localization_output
64
        if level_number < n_segmentation_levels:
65
            segmentation_layers.insert(0, Conv2D(n_labels, (1, 1))(current_layer))
66
67
    if summation:
68
        output_layer = None
69
        for level_number in reversed(range(n_segmentation_levels)):
70
            segmentation_layer = segmentation_layers[level_number]
71
            if output_layer is None:
72
                output_layer = segmentation_layer
73
            else:
74
                output_layer = Add()([output_layer, segmentation_layer])
75
76
            if level_number > 0:
77
                output_layer = UpSampling2D(size=(2, 2))(output_layer)
78
    else:
79
        output_layer = segmentation_layers[0]
80
81
    activation_block = Activation(activation_name)(output_layer)
82
    activation_block = Permute((2, 3, 1))(activation_block)
83
    model = Model(inputs=inputs, outputs=activation_block)
84
    model.compile(optimizer=optimizer(lr=initial_learning_rate), loss=loss_function,
85
                  metrics=metrics)
86
    return model
87
88
89
def create_localization_module(input_layer, n_filters):
90
    convolution1 = create_convolution_block(input_layer, n_filters)
91
    convolution2 = create_convolution_block(convolution1, n_filters, kernel=(1, 1))
92
    return convolution2
93
94
95
def create_up_sampling_module(input_layer, n_filters, size=(2, 2)):
96
    up_sample = UpSampling2D(size=size)(input_layer)
97
    convolution = create_convolution_block(up_sample, n_filters)
98
    return convolution
99
100
101
def create_context_module(input_layer, n_level_filters, dropout_rate=0.3, data_format="channels_first"):
102
    convolution1 = create_convolution_block(input_layer=input_layer, n_filters=n_level_filters)
103
    dropout = SpatialDropout2D(rate=dropout_rate, data_format=data_format)(convolution1)
104
    convolution2 = create_convolution_block(input_layer=dropout, n_filters=n_level_filters)
105
    return convolution2