|
a |
|
b/fetal_net/model/resnet/resnet.py |
|
|
1 |
from __future__ import division |
|
|
2 |
|
|
|
3 |
import six |
|
|
4 |
from keras.models import Model |
|
|
5 |
from keras.layers import ( |
|
|
6 |
Input, |
|
|
7 |
Activation, |
|
|
8 |
Dense, |
|
|
9 |
Flatten |
|
|
10 |
) |
|
|
11 |
from keras.layers.convolutional import ( |
|
|
12 |
Conv2D, |
|
|
13 |
MaxPooling2D, |
|
|
14 |
AveragePooling2D |
|
|
15 |
) |
|
|
16 |
from keras.layers.merge import add |
|
|
17 |
from keras.layers.normalization import BatchNormalization |
|
|
18 |
from keras.regularizers import l2 |
|
|
19 |
from keras import backend as K |
|
|
20 |
|
|
|
21 |
|
|
|
22 |
def _bn_relu(input): |
|
|
23 |
"""Helper to build a BN -> relu block |
|
|
24 |
""" |
|
|
25 |
norm = BatchNormalization(axis=CHANNEL_AXIS)(input) |
|
|
26 |
return Activation("relu")(norm) |
|
|
27 |
|
|
|
28 |
|
|
|
29 |
def _conv_bn_relu(**conv_params): |
|
|
30 |
"""Helper to build a conv -> BN -> relu block |
|
|
31 |
""" |
|
|
32 |
filters = conv_params["filters"] |
|
|
33 |
kernel_size = conv_params["kernel_size"] |
|
|
34 |
strides = conv_params.setdefault("strides", (1, 1)) |
|
|
35 |
kernel_initializer = conv_params.setdefault("kernel_initializer", "he_normal") |
|
|
36 |
padding = conv_params.setdefault("padding", "same") |
|
|
37 |
kernel_regularizer = conv_params.setdefault("kernel_regularizer", l2(1.e-4)) |
|
|
38 |
|
|
|
39 |
def f(input): |
|
|
40 |
conv = Conv2D(filters=filters, kernel_size=kernel_size, |
|
|
41 |
strides=strides, padding=padding, |
|
|
42 |
kernel_initializer=kernel_initializer, |
|
|
43 |
kernel_regularizer=kernel_regularizer)(input) |
|
|
44 |
return _bn_relu(conv) |
|
|
45 |
|
|
|
46 |
return f |
|
|
47 |
|
|
|
48 |
|
|
|
49 |
def _bn_relu_conv(**conv_params): |
|
|
50 |
"""Helper to build a BN -> relu -> conv block. |
|
|
51 |
This is an improved scheme proposed in http://arxiv.org/pdf/1603.05027v2.pdf |
|
|
52 |
""" |
|
|
53 |
filters = conv_params["filters"] |
|
|
54 |
kernel_size = conv_params["kernel_size"] |
|
|
55 |
strides = conv_params.setdefault("strides", (1, 1)) |
|
|
56 |
kernel_initializer = conv_params.setdefault("kernel_initializer", "he_normal") |
|
|
57 |
padding = conv_params.setdefault("padding", "same") |
|
|
58 |
kernel_regularizer = conv_params.setdefault("kernel_regularizer", l2(1.e-4)) |
|
|
59 |
|
|
|
60 |
def f(input): |
|
|
61 |
activation = _bn_relu(input) |
|
|
62 |
return Conv2D(filters=filters, kernel_size=kernel_size, |
|
|
63 |
strides=strides, padding=padding, |
|
|
64 |
kernel_initializer=kernel_initializer, |
|
|
65 |
kernel_regularizer=kernel_regularizer)(activation) |
|
|
66 |
|
|
|
67 |
return f |
|
|
68 |
|
|
|
69 |
|
|
|
70 |
def _shortcut(input, residual): |
|
|
71 |
"""Adds a shortcut between input and residual block and merges them with "sum" |
|
|
72 |
""" |
|
|
73 |
# Expand channels of shortcut to match residual. |
|
|
74 |
# Stride appropriately to match residual (width, height) |
|
|
75 |
# Should be int if network architecture is correctly configured. |
|
|
76 |
input_shape = K.int_shape(input) |
|
|
77 |
residual_shape = K.int_shape(residual) |
|
|
78 |
stride_width = int(round(input_shape[ROW_AXIS] / residual_shape[ROW_AXIS])) |
|
|
79 |
stride_height = int(round(input_shape[COL_AXIS] / residual_shape[COL_AXIS])) |
|
|
80 |
equal_channels = input_shape[CHANNEL_AXIS] == residual_shape[CHANNEL_AXIS] |
|
|
81 |
|
|
|
82 |
shortcut = input |
|
|
83 |
# 1 X 1 conv if shape is different. Else identity. |
|
|
84 |
if stride_width > 1 or stride_height > 1 or not equal_channels: |
|
|
85 |
shortcut = Conv2D(filters=residual_shape[CHANNEL_AXIS], |
|
|
86 |
kernel_size=(1, 1), |
|
|
87 |
strides=(stride_width, stride_height), |
|
|
88 |
padding="valid", |
|
|
89 |
kernel_initializer="he_normal", |
|
|
90 |
kernel_regularizer=l2(0.0001))(input) |
|
|
91 |
|
|
|
92 |
return add([shortcut, residual]) |
|
|
93 |
|
|
|
94 |
|
|
|
95 |
def _residual_block(block_function, filters, repetitions, is_first_layer=False): |
|
|
96 |
"""Builds a residual block with repeating bottleneck blocks. |
|
|
97 |
""" |
|
|
98 |
def f(input): |
|
|
99 |
for i in range(repetitions): |
|
|
100 |
init_strides = (1, 1) |
|
|
101 |
if i == 0 and not is_first_layer: |
|
|
102 |
init_strides = (2, 2) |
|
|
103 |
input = block_function(filters=filters, init_strides=init_strides, |
|
|
104 |
is_first_block_of_first_layer=(is_first_layer and i == 0))(input) |
|
|
105 |
return input |
|
|
106 |
|
|
|
107 |
return f |
|
|
108 |
|
|
|
109 |
|
|
|
110 |
def basic_block(filters, init_strides=(1, 1), is_first_block_of_first_layer=False): |
|
|
111 |
"""Basic 3 X 3 convolution blocks for use on resnets with layers <= 34. |
|
|
112 |
Follows improved proposed scheme in http://arxiv.org/pdf/1603.05027v2.pdf |
|
|
113 |
""" |
|
|
114 |
def f(input): |
|
|
115 |
|
|
|
116 |
if is_first_block_of_first_layer: |
|
|
117 |
# don't repeat bn->relu since we just did bn->relu->maxpool |
|
|
118 |
conv1 = Conv2D(filters=filters, kernel_size=(3, 3), |
|
|
119 |
strides=init_strides, |
|
|
120 |
padding="same", |
|
|
121 |
kernel_initializer="he_normal", |
|
|
122 |
kernel_regularizer=l2(1e-4))(input) |
|
|
123 |
else: |
|
|
124 |
conv1 = _bn_relu_conv(filters=filters, kernel_size=(3, 3), |
|
|
125 |
strides=init_strides)(input) |
|
|
126 |
|
|
|
127 |
residual = _bn_relu_conv(filters=filters, kernel_size=(3, 3))(conv1) |
|
|
128 |
return _shortcut(input, residual) |
|
|
129 |
|
|
|
130 |
return f |
|
|
131 |
|
|
|
132 |
|
|
|
133 |
def bottleneck(filters, init_strides=(1, 1), is_first_block_of_first_layer=False): |
|
|
134 |
"""Bottleneck architecture for > 34 layer resnet. |
|
|
135 |
Follows improved proposed scheme in http://arxiv.org/pdf/1603.05027v2.pdf |
|
|
136 |
|
|
|
137 |
Returns: |
|
|
138 |
A final conv layer of filters * 4 |
|
|
139 |
""" |
|
|
140 |
def f(input): |
|
|
141 |
|
|
|
142 |
if is_first_block_of_first_layer: |
|
|
143 |
# don't repeat bn->relu since we just did bn->relu->maxpool |
|
|
144 |
conv_1_1 = Conv2D(filters=filters, kernel_size=(1, 1), |
|
|
145 |
strides=init_strides, |
|
|
146 |
padding="same", |
|
|
147 |
kernel_initializer="he_normal", |
|
|
148 |
kernel_regularizer=l2(1e-4))(input) |
|
|
149 |
else: |
|
|
150 |
conv_1_1 = _bn_relu_conv(filters=filters, kernel_size=(1, 1), |
|
|
151 |
strides=init_strides)(input) |
|
|
152 |
|
|
|
153 |
conv_3_3 = _bn_relu_conv(filters=filters, kernel_size=(3, 3))(conv_1_1) |
|
|
154 |
residual = _bn_relu_conv(filters=filters * 4, kernel_size=(1, 1))(conv_3_3) |
|
|
155 |
return _shortcut(input, residual) |
|
|
156 |
|
|
|
157 |
return f |
|
|
158 |
|
|
|
159 |
|
|
|
160 |
def _handle_dim_ordering(): |
|
|
161 |
global ROW_AXIS |
|
|
162 |
global COL_AXIS |
|
|
163 |
global CHANNEL_AXIS |
|
|
164 |
if K.image_dim_ordering() == 'tf': |
|
|
165 |
ROW_AXIS = 1 |
|
|
166 |
COL_AXIS = 2 |
|
|
167 |
CHANNEL_AXIS = 3 |
|
|
168 |
else: |
|
|
169 |
CHANNEL_AXIS = 1 |
|
|
170 |
ROW_AXIS = 2 |
|
|
171 |
COL_AXIS = 3 |
|
|
172 |
|
|
|
173 |
|
|
|
174 |
def _get_block(identifier): |
|
|
175 |
if isinstance(identifier, six.string_types): |
|
|
176 |
res = globals().get(identifier) |
|
|
177 |
if not res: |
|
|
178 |
raise ValueError('Invalid {}'.format(identifier)) |
|
|
179 |
return res |
|
|
180 |
return identifier |
|
|
181 |
|
|
|
182 |
|
|
|
183 |
class ResnetBuilder(object): |
|
|
184 |
@staticmethod |
|
|
185 |
def build(input_shape, num_outputs, block_fn, repetitions): |
|
|
186 |
"""Builds a custom ResNet like architecture. |
|
|
187 |
|
|
|
188 |
Args: |
|
|
189 |
input_shape: The input shape in the form (nb_channels, nb_rows, nb_cols) |
|
|
190 |
num_outputs: The number of outputs at final softmax layer |
|
|
191 |
block_fn: The block function to use. This is either `basic_block` or `bottleneck`. |
|
|
192 |
The original paper used basic_block for layers < 50 |
|
|
193 |
repetitions: Number of repetitions of various block units. |
|
|
194 |
At each block unit, the number of filters are doubled and the input size is halved |
|
|
195 |
|
|
|
196 |
Returns: |
|
|
197 |
The keras `Model`. |
|
|
198 |
""" |
|
|
199 |
_handle_dim_ordering() |
|
|
200 |
if len(input_shape) != 3: |
|
|
201 |
raise Exception("Input shape should be a tuple (nb_channels, nb_rows, nb_cols)") |
|
|
202 |
|
|
|
203 |
# Permute dimension order if necessary |
|
|
204 |
if K.image_dim_ordering() == 'tf': |
|
|
205 |
input_shape = (input_shape[1], input_shape[2], input_shape[0]) |
|
|
206 |
|
|
|
207 |
# Load function from str if needed. |
|
|
208 |
block_fn = _get_block(block_fn) |
|
|
209 |
|
|
|
210 |
input = Input(shape=input_shape) |
|
|
211 |
conv1 = _conv_bn_relu(filters=64, kernel_size=(7, 7), strides=(2, 2))(input) |
|
|
212 |
pool1 = MaxPooling2D(pool_size=(3, 3), strides=(2, 2), padding="same")(conv1) |
|
|
213 |
|
|
|
214 |
block = pool1 |
|
|
215 |
filters = 64 |
|
|
216 |
for i, r in enumerate(repetitions): |
|
|
217 |
block = _residual_block(block_fn, filters=filters, repetitions=r, is_first_layer=(i == 0))(block) |
|
|
218 |
filters *= 2 |
|
|
219 |
|
|
|
220 |
# Last activation |
|
|
221 |
block = _bn_relu(block) |
|
|
222 |
|
|
|
223 |
# Classifier block |
|
|
224 |
block_shape = K.int_shape(block) |
|
|
225 |
pool2 = AveragePooling2D(pool_size=(block_shape[ROW_AXIS], block_shape[COL_AXIS]), |
|
|
226 |
strides=(1, 1))(block) |
|
|
227 |
flatten1 = Flatten()(pool2) |
|
|
228 |
dense = Dense(units=num_outputs, kernel_initializer="he_normal", |
|
|
229 |
activation="softmax")(flatten1) |
|
|
230 |
|
|
|
231 |
model = Model(inputs=input, outputs=dense) |
|
|
232 |
return model |
|
|
233 |
|
|
|
234 |
@staticmethod |
|
|
235 |
def build_resnet_18(input_shape, num_outputs): |
|
|
236 |
return ResnetBuilder.build(input_shape, num_outputs, basic_block, [2, 2, 2, 2]) |
|
|
237 |
|
|
|
238 |
@staticmethod |
|
|
239 |
def build_resnet_34(input_shape, num_outputs): |
|
|
240 |
return ResnetBuilder.build(input_shape, num_outputs, basic_block, [3, 4, 6, 3]) |
|
|
241 |
|
|
|
242 |
@staticmethod |
|
|
243 |
def build_resnet_50(input_shape, num_outputs): |
|
|
244 |
return ResnetBuilder.build(input_shape, num_outputs, bottleneck, [3, 4, 6, 3]) |
|
|
245 |
|
|
|
246 |
@staticmethod |
|
|
247 |
def build_resnet_101(input_shape, num_outputs): |
|
|
248 |
return ResnetBuilder.build(input_shape, num_outputs, bottleneck, [3, 4, 23, 3]) |
|
|
249 |
|
|
|
250 |
@staticmethod |
|
|
251 |
def build_resnet_152(input_shape, num_outputs): |
|
|
252 |
return ResnetBuilder.build(input_shape, num_outputs, bottleneck, [3, 8, 36, 3]) |