[ccb1dd]: / fetal_net / model / fetal_net_skip3.py

Download this file

78 lines (67 with data), 3.1 kB

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
from functools import partial
from keras import Model, Input
from keras.layers import BatchNormalization, Conv2D, Softmax, MaxPooling2D, Concatenate, Cropping2D, ReLU
from keras.losses import binary_crossentropy
from keras.optimizers import RMSprop
from tensorflow import Tensor
import numpy as np
def fetal_origin3_model(input_shape=(5, 128, 128),
optimizer=RMSprop,
initial_learning_rate=5e-4,
loss_function='binary_cross_entropy'):
"""
:param input_shape:
:param n_base_filters:
:param depth:
:param dropout_rate:
:param n_segmentation_levels:
:param n_labels:
:param optimizer:
:param initial_learning_rate:
:param loss_function:
:param activation_name:
:return:
"""
kernel_size = (3, 3)
padding = 'same'
batch_norm = True
Conv2D_ = partial(Conv2D, kernel_size=kernel_size, padding=padding, data_format='channels_last')
def conv_block(input_layer, batch_norm=batch_norm, channels=16):
pre_output = Conv2D_(channels, activation=None)(input_layer)
output = MaxPooling2D(data_format='channels_last', padding='same')(pre_output)
output = ReLU()(output)
pre_output = ReLU()(pre_output)
if batch_norm:
output = BatchNormalization()(output)
pre_output = BatchNormalization()(pre_output)
return output, pre_output
def fc_block(input_layer: Tensor, output_channels, batch_norm=batch_norm,
activation='tanh'):
output = Conv2D_(output_channels,
kernel_size=input_layer.shape.as_list()[-3:-1],
padding='valid',
activation=activation)(input_layer)
if batch_norm:
output = BatchNormalization()(output)
return output
input_layer = Input(input_shape)
prev_output, prev_output_prepool = conv_block(input_layer, channels=16)
prev_output_prepool_shape = prev_output_prepool.shape.as_list()[1]
for i in range(2, 5+1):
prev_output_shape = np.ceil(prev_output_prepool_shape / 2)
crop_val = int(np.ceil((prev_output_prepool_shape - prev_output_shape) / 2))
cropped = Cropping2D(data_format='channels_last',
cropping=(crop_val, crop_val))(prev_output_prepool)
added = Concatenate()([prev_output, cropped])
_, prev_output_prepool = conv_block(added, channels=16 * pow(2, i-1))
prev_output, prev_output_prepool = conv_block(prev_output_prepool, channels=16 * pow(2, i-1))
prev_output_prepool_shape = np.ceil(prev_output_prepool_shape / 2)
fc_block_1 = fc_block(prev_output, 256, batch_norm=False)
fc_block_2 = fc_block(fc_block_1, 2, batch_norm=False)
output_layer = Softmax(name='softmax_last_layer')(fc_block_2)
loss = binary_crossentropy
model = Model(inputs=input_layer, output=output_layer)
model.compile(optimizer=optimizer(lr=initial_learning_rate),
loss=loss,
metrics=['acc']) # 'binary_crossentropy')#loss_function)
return model