|
a |
|
b/fetal/preprocess.py |
|
|
1 |
""" |
|
|
2 |
Tools for converting, normalizing, and fixing the brats data. |
|
|
3 |
""" |
|
|
4 |
|
|
|
5 |
import glob |
|
|
6 |
import os |
|
|
7 |
import warnings |
|
|
8 |
import shutil |
|
|
9 |
|
|
|
10 |
import SimpleITK as sitk |
|
|
11 |
import numpy as np |
|
|
12 |
from nipype.interfaces.ants import N4BiasFieldCorrection |
|
|
13 |
|
|
|
14 |
|
|
|
15 |
# from brats.train_fetal import config |
|
|
16 |
|
|
|
17 |
|
|
|
18 |
def append_basename(in_file, append): |
|
|
19 |
dirname, basename = os.path.split(in_file) |
|
|
20 |
base, ext = basename.split(".", 1) |
|
|
21 |
return os.path.join(dirname, base + append + "." + ext) |
|
|
22 |
|
|
|
23 |
|
|
|
24 |
def get_background_mask(in_folder, out_file, truth_name="GlistrBoost_ManuallyCorrected"): |
|
|
25 |
""" |
|
|
26 |
This function computes a common background mask for all of the data in a subject folder. |
|
|
27 |
:param in_folder: a subject folder from the BRATS dataset. |
|
|
28 |
:param out_file: an image containing a mask that is 1 where the image data for that subject contains the background. |
|
|
29 |
:param truth_name: how the truth file is labeled int he subject folder |
|
|
30 |
:return: the path to the out_file |
|
|
31 |
""" |
|
|
32 |
background_image = None |
|
|
33 |
for name in config["all_modalities"] + [truth_name]: |
|
|
34 |
image = sitk.ReadImage(get_image(in_folder, name)) |
|
|
35 |
if background_image: |
|
|
36 |
if name == truth_name and not (image.GetOrigin() == background_image.GetOrigin()): |
|
|
37 |
image.SetOrigin(background_image.GetOrigin()) |
|
|
38 |
background_image = sitk.And(image == 0, background_image) |
|
|
39 |
else: |
|
|
40 |
background_image = image == 0 |
|
|
41 |
sitk.WriteImage(background_image, out_file) |
|
|
42 |
return os.path.abspath(out_file) |
|
|
43 |
|
|
|
44 |
|
|
|
45 |
def convert_image_format(in_file, out_file): |
|
|
46 |
sitk.WriteImage(sitk.ReadImage(in_file), out_file) |
|
|
47 |
return out_file |
|
|
48 |
|
|
|
49 |
|
|
|
50 |
def window_intensities_data(data, min_percent=1, max_percent=99): |
|
|
51 |
image = sitk.GetImageFromArray(data) |
|
|
52 |
image = sitk.IntensityWindowing(image, |
|
|
53 |
np.percentile(data, min_percent), |
|
|
54 |
np.percentile(data, max_percent)) |
|
|
55 |
return sitk.GetArrayFromImage(image) |
|
|
56 |
|
|
|
57 |
|
|
|
58 |
def window_intensities(in_file, out_file, min_percent=1, max_percent=99): |
|
|
59 |
image = sitk.ReadImage(in_file, sitk.sitkFloat32) |
|
|
60 |
image_data = sitk.GetArrayFromImage(image) |
|
|
61 |
out_image = sitk.IntensityWindowing(image, np.percentile(image_data, min_percent), |
|
|
62 |
np.percentile(image_data, max_percent)) |
|
|
63 |
sitk.WriteImage(out_image, out_file) |
|
|
64 |
return os.path.abspath(out_file) |
|
|
65 |
|
|
|
66 |
|
|
|
67 |
def correct_bias(in_file, out_file, image_type=sitk.sitkFloat64): |
|
|
68 |
""" |
|
|
69 |
Corrects the bias using ANTs N4BiasFieldCorrection. If this fails, will then attempt to correct bias using SimpleITK |
|
|
70 |
:param in_file: input file path |
|
|
71 |
:param out_file: output file path |
|
|
72 |
:param image_type: |
|
|
73 |
:return: file path to the bias corrected image |
|
|
74 |
""" |
|
|
75 |
correct = N4BiasFieldCorrection() |
|
|
76 |
correct.inputs.input_image = in_file |
|
|
77 |
correct.inputs.output_image = out_file |
|
|
78 |
try: |
|
|
79 |
done = correct.run() |
|
|
80 |
return done.outputs.output_image |
|
|
81 |
except IOError: |
|
|
82 |
warnings.warn(RuntimeWarning("ANTs N4BIasFieldCorrection could not be found." |
|
|
83 |
"Will try using SimpleITK for bias field correction" |
|
|
84 |
" which will take much longer. To fix this problem, add N4BiasFieldCorrection" |
|
|
85 |
" to your PATH system variable. (example: EXPORT PATH=${PATH}:/path/to/ants/bin)")) |
|
|
86 |
input_image = sitk.ReadImage(in_file, image_type) |
|
|
87 |
output_image = sitk.N4BiasFieldCorrection(input_image, input_image > 0) |
|
|
88 |
sitk.WriteImage(output_image, out_file) |
|
|
89 |
return os.path.abspath(out_file) |
|
|
90 |
|
|
|
91 |
|
|
|
92 |
def rescale(in_file, out_file, minimum=0, maximum=20000): |
|
|
93 |
image = sitk.ReadImage(in_file) |
|
|
94 |
sitk.WriteImage(sitk.RescaleIntensity(image, minimum, maximum), out_file) |
|
|
95 |
return os.path.abspath(out_file) |
|
|
96 |
|
|
|
97 |
|
|
|
98 |
def get_image(subject_folder, name): |
|
|
99 |
file_card = os.path.join(subject_folder, "*" + name + ".nii") |
|
|
100 |
try: |
|
|
101 |
return glob.glob(file_card)[0] |
|
|
102 |
except IndexError: |
|
|
103 |
raise RuntimeError("Could not find file matching {}".format(file_card)) |
|
|
104 |
|
|
|
105 |
|
|
|
106 |
def background_to_zero(in_file, background_file, out_file): |
|
|
107 |
sitk.WriteImage(sitk.Mask(sitk.ReadImage(in_file), sitk.ReadImage(background_file, sitk.sitkUInt8) == 0), |
|
|
108 |
out_file) |
|
|
109 |
return out_file |
|
|
110 |
|
|
|
111 |
|
|
|
112 |
def check_origin(in_file, in_file2): |
|
|
113 |
image = sitk.ReadImage(in_file) |
|
|
114 |
image2 = sitk.ReadImage(in_file2) |
|
|
115 |
if not image.GetOrigin() == image2.GetOrigin(): |
|
|
116 |
image.SetOrigin(image2.GetOrigin()) |
|
|
117 |
sitk.WriteImage(image, in_file) |
|
|
118 |
|
|
|
119 |
|
|
|
120 |
def normalize_image(in_file, out_file, bias_correction=True): |
|
|
121 |
if bias_correction: |
|
|
122 |
correct_bias(in_file, out_file) |
|
|
123 |
else: |
|
|
124 |
shutil.copy(in_file, out_file) |
|
|
125 |
return out_file |
|
|
126 |
|
|
|
127 |
|
|
|
128 |
def convert_brats_folder(in_folder, out_folder, truth_name="truth", |
|
|
129 |
no_bias_correction_modalities=None): |
|
|
130 |
for name in config["all_modalities"]: |
|
|
131 |
image_file = get_image(in_folder, name) |
|
|
132 |
out_file = os.path.abspath(os.path.join(out_folder, name + ".nii")) |
|
|
133 |
perform_bias_correction = no_bias_correction_modalities and name not in no_bias_correction_modalities |
|
|
134 |
normalize_image(image_file, out_file, bias_correction=perform_bias_correction) |
|
|
135 |
# copy the truth file |
|
|
136 |
try: |
|
|
137 |
truth_file = get_image(in_folder, truth_name) |
|
|
138 |
except RuntimeError: |
|
|
139 |
truth_file = get_image(in_folder, truth_name.split("_")[0]) |
|
|
140 |
out_file = os.path.abspath(os.path.join(out_folder, "truth.nii.gz")) |
|
|
141 |
shutil.copy(truth_file, out_file) |
|
|
142 |
check_origin(out_file, get_image(in_folder, config["all_modalities"][0])) |
|
|
143 |
|
|
|
144 |
|
|
|
145 |
def convert_brats_data(brats_folder, out_folder, overwrite=False, no_bias_correction_modalities=("flair",)): |
|
|
146 |
""" |
|
|
147 |
Preprocesses the BRATS data and writes it to a given output folder. Assumes the original folder structure. |
|
|
148 |
:param brats_folder: folder containing the original brats data |
|
|
149 |
:param out_folder: output folder to which the preprocessed data will be written |
|
|
150 |
:param overwrite: set to True in order to redo all the preprocessing |
|
|
151 |
:param no_bias_correction_modalities: performing bias correction could reduce the signal of certain modalities. If |
|
|
152 |
concerned about a reduction in signal for a specific modality, specify by including the given modality in a list |
|
|
153 |
or tuple. |
|
|
154 |
:return: |
|
|
155 |
""" |
|
|
156 |
for subject_folder in glob.glob(os.path.join(brats_folder, "*")): |
|
|
157 |
if os.path.isdir(subject_folder): |
|
|
158 |
subject = os.path.basename(subject_folder) |
|
|
159 |
new_subject_folder = os.path.join(out_folder, os.path.basename(os.path.dirname(subject_folder)), |
|
|
160 |
subject) |
|
|
161 |
if not os.path.exists(new_subject_folder) or overwrite: |
|
|
162 |
if not os.path.exists(new_subject_folder): |
|
|
163 |
os.makedirs(new_subject_folder) |
|
|
164 |
print('subject_folder: ' + subject_folder) |
|
|
165 |
convert_brats_folder(subject_folder, new_subject_folder, |
|
|
166 |
no_bias_correction_modalities=no_bias_correction_modalities) |