a b/fetal/predict.py
1
import argparse
2
import json
3
import os
4
5
from fetal_net.prediction import run_validation_cases
6
7
8
def main(config, split='test', overlap_factor=1, use_augmentations=False):
9
    prediction_dir = os.path.abspath(os.path.join(config['base_dir'], 'predictions', split))
10
11
    indices_file = {
12
      "test": config["test_file"],
13
      "val": config["validation_file"],
14
      "train": config["training_file"]
15
    }[split]
16
    run_validation_cases(validation_keys_file=indices_file,
17
                         model_file=config["model_file"],
18
                         training_modalities=config["training_modalities"],
19
                         hdf5_file=config["data_file"],
20
                         output_dir=prediction_dir,
21
                         overlap_factor=overlap_factor,
22
                         patch_shape=config["patch_shape"] + [config["patch_depth"]],
23
                         prev_truth_index=config["prev_truth_index"],
24
                         prev_truth_size=config["prev_truth_size"],
25
                         use_augmentations=use_augmentations)
26
27
28
if __name__ == "__main__":
29
    parser = argparse.ArgumentParser()
30
    parser.add_argument("--config_dir", help="specifies config dir path",
31
                        type=str, required=True)
32
    parser.add_argument("--split", help="What split to predict on? (test/val)",
33
                        type=str, default='test')
34
    parser.add_argument("--overlap_factor", help="specifies overlap between prediction patches",
35
                        type=float, default=0.9)
36
    parser.add_argument("--use_augmentation", help="1 to use predict-time augmentations",
37
                        type=float, default=0)
38
    opts = parser.parse_args()
39
40
    with open(os.path.join(opts.config_dir, 'config.json')) as f:
41
        config = json.load(f)
42
43
    main(config, opts.split, opts.overlap_factor, use_augmentations=opts.use_augmentation)