[7a84af]: / prod / predict_nifti2.py

Download this file

221 lines (182 with data), 10.2 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
import argparse
import json
import os
from pathlib import Path
import nibabel as nib
import fetal_net.preprocess
from fetal.preprocess import window_intensities_data
from fetal.utils import get_last_model_path
from fetal_net.normalize import normalize_data
from fetal_net.postprocess import postprocess_prediction as process_pred
from fetal_net.prediction import patch_wise_prediction, predict_augment, predict_flips
from fetal_net.preprocess import *
from fetal_net.training import load_old_model
from fetal_net.utils.cut_relevant_areas import find_bounding_box, check_bounding_box
from fetal_net.utils.utils import read_img, get_image
def save_nifti(data, path):
nifti = get_image(data)
nib.save(nifti, path)
def secondary_prediction(mask, vol, config2, model2_path=None,
preprocess_method2=None, norm_params2=None,
overlap_factor=0.9, augment2=None, num_augment=32, return_all_preds=False):
model2 = load_old_model(get_last_model_path(model2_path), config=config2)
pred = mask
bbox_start, bbox_end = find_bounding_box(pred)
check_bounding_box(pred, bbox_start, bbox_end)
padding = [16, 16, 8]
if padding is not None:
bbox_start = np.maximum(bbox_start - padding, 0)
bbox_end = np.minimum(bbox_end + padding, mask.shape)
data = vol.astype(np.float)[
bbox_start[0]:bbox_end[0],
bbox_start[1]:bbox_end[1],
bbox_start[2]:bbox_end[2]
]
data = preproc_and_norm(data, preprocess_method2, norm_params2)
prediction = get_prediction(data, model2, augment=augment2, num_augments=num_augment, return_all_preds=return_all_preds,
overlap_factor=overlap_factor, config=config2)
padding2 = list(zip(bbox_start, np.array(vol.shape) - bbox_end))
if return_all_preds:
padding2 = [(0, 0)] + padding2
print(padding2)
print(prediction.shape)
prediction = np.pad(prediction, padding2, mode='constant', constant_values=0)
return prediction
def preproc_and_norm(data, preprocess_method=None, norm_params=None, scale=None, preproc=None):
if preprocess_method is not None:
print('Applying preprocess by {}...'.format(preprocess_method))
if preprocess_method == 'window_1_99':
data = window_intensities_data(data)
else:
raise Exception('Unknown preprocess: {}'.format(preprocess_method))
if scale is not None:
data = ndimage.zoom(data, scale)
if preproc is not None:
preproc_func = getattr(fetal_net.preprocess, preproc)
data = preproc_func(data)
# data = normalize_data(data, mean=data.mean(), std=data.std())
if norm_params is not None and any(norm_params.values()):
data = normalize_data(data, mean=norm_params['mean'], std=norm_params['std'])
return data
def get_prediction(data, model, augment, num_augments, return_all_preds, overlap_factor, config):
if augment is not None:
patch_shape = config["patch_shape"] + [config["patch_depth"]]
if augment == 'all':
prediction = predict_augment(data, model=model, overlap_factor=overlap_factor, num_augments=num_augments, patch_shape=patch_shape)
elif augment == 'flip':
prediction = predict_flips(data, model=model, overlap_factor=overlap_factor, patch_shape=patch_shape, config=config)
else:
raise ("Unknown augmentation {}".format(augment))
if not return_all_preds:
prediction = np.median(prediction, axis=0)
else:
prediction = \
patch_wise_prediction(model=model,
data=np.expand_dims(data, 0),
overlap_factor=overlap_factor,
patch_shape=config["patch_shape"] + [config["patch_depth"]])
prediction = prediction.squeeze()
return prediction
def main(input_path, output_path, overlap_factor,
config, model_path, preprocess_method=None, norm_params=None, augment=None, num_augment=0,
config2=None, model2_path=None, preprocess_method2=None, norm_params2=None, augment2=None, num_augment2=0,
z_scale=None, xy_scale=None, return_all_preds=False):
print(model_path)
model = load_old_model(get_last_model_path(model_path), config=config)
print('Loading nifti from {}...'.format(input_path))
nifti = read_img(input_path)
print('Predicting mask...')
data = nifti.get_fdata().astype(np.float).squeeze()
print('original_shape: ' + str(data.shape))
scan_name = Path(input_path).name.split('.')[0]
if (z_scale is None):
z_scale = 1.0
if (xy_scale is None):
xy_scale = 1.0
if z_scale != 1.0 or xy_scale != 1.0:
data = ndimage.zoom(data, [xy_scale, xy_scale, z_scale])
data = preproc_and_norm(data, preprocess_method, norm_params,
scale=config.get('scale_data', None),
preproc=config.get('preproc', None))
save_nifti(data, os.path.join(output_path, scan_name + '_data.nii.gz'))
data = np.pad(data, 3, 'constant', constant_values=data.min())
print('Shape: ' + str(data.shape))
prediction = get_prediction(data=data, model=model, augment=augment,
num_augments=num_augment, return_all_preds=return_all_preds,
overlap_factor=overlap_factor, config=config)
# unpad
prediction = prediction[3:-3, 3:-3, 3:-3]
# revert to original size
if config.get('scale_data', None) is not None:
prediction = ndimage.zoom(prediction.squeeze(), np.divide([1, 1, 1], config.get('scale_data', None)), order=0)[..., np.newaxis]
save_nifti(prediction, os.path.join(output_path, scan_name + '_pred.nii.gz'))
if z_scale != 1.0 or xy_scale != 1.0:
prediction = ndimage.zoom(prediction.squeeze(), [1.0 / xy_scale, 1.0 / xy_scale, 1.0 / z_scale], order=1)[..., np.newaxis]
# if prediction.shape[-1] > 1:
# prediction = prediction[..., 1]
if config2 is not None:
prediction = prediction.squeeze()
mask = process_pred(prediction, gaussian_std=0.5, threshold=0.5) # .astype(np.uint8)
nifti = read_img(input_path)
prediction = secondary_prediction(mask, vol=nifti.get_fdata().astype(np.float),
config2=config2, model2_path=model2_path,
preprocess_method2=preprocess_method2, norm_params2=norm_params2,
overlap_factor=overlap_factor, augment2=augment2, num_augment=num_augment2,
return_all_preds=return_all_preds)
save_nifti(prediction, os.path.join(output_path, scan_name + 'pred_roi.nii.gz'))
print('Saving to {}'.format(output_path))
print('Finished.')
def get_params(config_dir):
with open(os.path.join(config_dir, 'config.json'), 'r') as f:
__config = json.load(f)
with open(os.path.join(config_dir, 'norm_params.json'), 'r') as f:
__norm_params = json.load(f)
__model_path = os.path.join(config_dir, os.path.basename(__config['model_file']))
return __config, __norm_params, __model_path
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--input_nii", help="specifies mat file dir path",
type=str, required=True)
parser.add_argument("--output_folder", help="specifies mat file dir path",
type=str, required=True)
parser.add_argument("--overlap_factor", help="specifies overlap between prediction patches",
type=float, default=0.9)
parser.add_argument("--z_scale", help="specifies overlap between prediction patches",
type=float, default=1)
parser.add_argument("--xy_scale", help="specifies overlap between prediction patches",
type=float, default=1)
parser.add_argument("--return_all_preds", help="output std for prediction",
type=int, default=0)
# Params for primary prediction
parser.add_argument("--config_dir", help="specifies config dir path",
type=str, required=True)
parser.add_argument("--preprocess", help="what preprocess to do",
type=str, required=False, default=None)
parser.add_argument("--augment", help="what augment to do",
type=str, required=False, default=None) # one of 'flip, all'
parser.add_argument("--num_augment", help="what augment to do",
type=int, required=False, default=0) # one of 'flip, all'
# Params for secondary prediction
parser.add_argument("--config2_dir", help="specifies config dir path",
type=str, required=False, default=None)
parser.add_argument("--preprocess2", help="what preprocess to do",
type=str, required=False, default=None)
parser.add_argument("--augment2", help="what augment to do",
type=str, required=False, default=None) # one of 'flip, all'
parser.add_argument("--num_augment2", help="what augment to do",
type=int, required=False, default=0) # one of 'flip, all'
opts = parser.parse_args()
Path(opts.output_folder).mkdir(exist_ok=True)
# 1
_config, _norm_params, _model_path = get_params(opts.config_dir)
# 2
if opts.config2_dir is not None:
_config2, _norm_params2, _model2_path = get_params(opts.config2_dir)
else:
_config2, _norm_params2, _model2_path = None, None, None
main(opts.input_nii, opts.output_folder, overlap_factor=opts.overlap_factor,
config=_config, model_path=_model_path, preprocess_method=opts.preprocess, norm_params=_norm_params, augment=opts.augment,
num_augment=opts.num_augment,
config2=_config2, model2_path=_model2_path, preprocess_method2=opts.preprocess2, norm_params2=_norm_params2, augment2=opts.augment2,
num_augment2=opts.num_augment2,
z_scale=opts.z_scale, xy_scale=opts.xy_scale, return_all_preds=opts.return_all_preds)