[fb4aec]: / tool / run_FatSegNet.py

Download this file

177 lines (120 with data), 7.0 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import argparse
import sys
import os
import time
sys.path.append('./')
from Code.adipose_pipeline import run_adipose_pipeline
from Code.utilities.misc import locate_file,locate_dir
import pandas as pd
import numpy as np
import warnings
if not sys.warnoptions:
warnings.simplefilter("ignore")
def check_paths(save_folder,subject_id,flags):
save_path=os.path.join(flags['output_path'],save_folder)
if not os.path.isdir(save_path):
os.mkdir(save_path)
if not os.path.isdir(os.path.join(save_path,subject_id)):
os.mkdir(os.path.join(save_path,subject_id))
final_path = os.path.join(save_path,subject_id)
return final_path
class Transcript(object):
def __init__(self, filename):
self.terminal = sys.stdout
self.logfile = open(filename, "a")
def write(self, message):
self.terminal.write(message)
self.logfile.write(message)
def flush(self):
# this flush method is needed for python 3 compatibility.
# this handles the flush command by doing nothing.
# you might want to specify some extra behavior here.
pass
def option_parse():
parser = argparse.ArgumentParser(
description='Adipose Pipeline to segment the abdominal adipose tissue into VAT and SAT. '
'Each subject should have a independent folder with the water and fat images. '
'Input images have to be nifti files and should be named consistently in all subjects. '
'The Output path is define by the user ; all the outputs from the pipeline will be store under $output_path/$subject_id. '
'The predicted segmentation mask is save under ($AAT_pred) and all the statistics under $ATT_stats',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument("-f", "--file", help="csv file containing the subjects to process, the csv file should be order as follow : $subject_id,$subject_path", required=False,default='participants.csv')
parser.add_argument("-outp", "--output_folder",
help="Main folder where the variables and control images are going to be store", required=False, default='')
parser.add_argument("-fat", "--fat_image", type=str, help="Name of the fat image", required=False,
default='FatImaging_F.nii.gz')
parser.add_argument("-water", "--water_image", type=str, help="Name of the water image", required=False,
default='FatImaging_W.nii.gz')
parser.add_argument('-No_QC',"--control_images",action='store_true',help='Plot subjects prediction for visual quality control',required=False,default=False)
parser.add_argument('-loc', "--run_localization", action='store_true',
help='run abdominal region localization model ', required=False, default=False)
parser.add_argument('-axial', "--axial", action='store_true',
help='run only axial model ', required=False, default=False)
parser.add_argument('-order', "--order", type=int,
help='interpolation order (0=nearest,1=linear(default),2=quadratic,3=cubic) ', required=False, default=1)
parser.add_argument('-comp', "--compartments", type=int,
help='Number of equal compartments to run the analysis, by default the whole region(wb) is calculated', required=False, default=0)
parser.add_argument('-AAT', "--increase_threshold", type=float,
help='Warning flag for an increase in AAT over threhold between consecutive scans', required=False, default=0.4)
parser.add_argument('-ratio', "--sat_to_vat_threshold", type=float,
help='Warning flag for a high vat to sat ratio', required=False, default=2.0)
parser.add_argument('-stats', "--run_stats", action='store_true',
help='run only stats , segmentation map required ', required=False, default=False)
parser.add_argument('-gpu_id', "--gpu_id", type=int,
help='if using gpu, please give the gpu device name', required=False, default=0)
args = parser.parse_args()
FLAGS = {}
FLAGS['multiviewModel'] = '/tool/Adipose_Seg_Models/Segmentation/'
FLAGS['singleViewModels'] = '/tool/Adipose_Seg_Models/Segmentation/'
FLAGS['localizationModels'] = '/tool/Adipose_Seg_Models/Localization/'
FLAGS['input_path']='/tool/Data'
FLAGS['output_path']='/tool/Output'
FLAGS['imgSize'] = [256, 224, 72]
FLAGS['spacing'] = [float(1.9531), float(1.9531),float(5.0)]
FLAGS['base_ornt'] = np.array([[0, -1], [1, 1], [2, 1]])
#FLAGS['compartments']=0
#control_images = True
return args,FLAGS
def run_fatsegnet(args,FLAGS):
# load file
participant_file=locate_file('*'+args.file,FLAGS['input_path'])
if participant_file:
print('Loading participant from file : %s'%participant_file[0])
df =pd.read_csv(participant_file[0],header=None)
if df.empty:
print('Participant file empty ')
else:
file_list=df.values
for sub in file_list:
id=sub[0]
path = locate_dir('*'+str(id)+'*',FLAGS['input_path'])
if path:
if os.path.isdir(path[0]):
start = time.time()
save_path = check_paths(save_folder=args.output_folder, subject_id=str(id),flags=FLAGS)
sys.stdout= Transcript(filename=save_path + '/temp.log')
run_adipose_pipeline(args=args, flags=FLAGS, save_path=save_path,data_path=path[0],id=str(id))
end = time.time() - start
print("Total time for computation of segmentation is %0.4f seconds."%end)
sys.stdout.logfile.close()
sys.stdout = sys.stdout.terminal
else:
print ('Directory %s not found'%path)
else :
print('Directory name %s not found' % id)
print('\n')
print('Thank you for using FatSegNet')
print('If you find it useful and use it for a publication, please cite: ')
print('\n')
print('Estrada S, Lu R, Conjeti S, et al.'
'FatSegNet: A fully automated deep learning pipeline for adipose tissue segmentation on abdominal dixon MRI.'
'Magn Reson Med. 2019;00:1-13. https:// doi.org/10.1002/mrm.28022')
else:
print('No partipant file found, please provide one the input data folder')
if __name__=='__main__':
args,FLAGS= option_parse()
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID";
# The GPU id to use, usually either "0" or "1";
os.environ["CUDA_VISIBLE_DEVICES"] = str(args.gpu_id);
run_fatsegnet(args,FLAGS)
sys.exit(0)