[fb4aec]: / tool / Code / utilities / conform.py

Download this file

172 lines (122 with data), 5.6 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
# Copyright 2019 Population Health Sciences and Image Analysis, German Center for Neurodegenerative Diseases(DZNE)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import nibabel as nib
import scipy.ndimage
import os
def calculated_new_ornt(iornt,base_ornt):
new_iornt=iornt[:]
for axno, direction in np.asarray(base_ornt):
idx=np.where(iornt[:,0] == axno)
idirection=iornt[int(idx[0][0]),1]
if direction == idirection:
new_iornt[int(idx[0][0]), 1] = 1.0
else:
new_iornt[int(idx[0][0]), 1] = -1.0
return new_iornt
def check_orientation(img,base_ornt=np.array([[0,-1],[1,1],[2,1]])):
iornt=nib.io_orientation(img.affine)
if not np.array_equal(iornt,base_ornt):
img = img.as_reoriented(calculated_new_ornt(iornt,base_ornt))
return img
def resample(image, spacing, new_spacing=[1, 1, 1],order=1,prefilter=True):
# Determine current pixel spacing
resize_factor = spacing / new_spacing
new_real_shape = image.shape * resize_factor
new_shape = np.round(new_real_shape)
real_resize_factor = new_shape / image.shape
new_spacing = spacing / real_resize_factor
image = scipy.ndimage.interpolation.zoom(image,real_resize_factor,order=order,prefilter=prefilter)
return image, new_spacing
def define_size(mov_dim,ref_dim):
new_dim=np.zeros(len(mov_dim),dtype=np.int)
borders=np.zeros((len(mov_dim),2),dtype=int)
padd = [int(mov_dim[0] // 2), int(mov_dim[1] // 2), int(mov_dim[2] // 2)]
for i in range(len(mov_dim)):
new_dim[i]=int(max(2*mov_dim[i],2*ref_dim[i]))
borders[i,0]= int(new_dim[i] // 2) -padd [i]
borders[i,1]= borders[i,0] +mov_dim[i]
return list(new_dim),borders
def map_size(arr,base_shape,axial):
if axial:
base_shape[2]=arr.shape[2]
print('Volume will be resize from %s to %s ' % (arr.shape, base_shape))
new_shape,borders=define_size(np.array(arr.shape),np.array(base_shape))
new_arr=np.zeros(new_shape)
final_arr=np.zeros(base_shape)
new_arr[borders[0,0]:borders[0,1],borders[1,0]:borders[1,1],borders[2,0]:borders[2,1]]= arr[:]
middle_point = [int(new_arr.shape[0] // 2), int(new_arr.shape[1] // 2), int(new_arr.shape[2] // 2)]
padd = [int(base_shape[0]/2), int(base_shape[1]/2), int(base_shape[2]/2)]
low_border=np.array((np.array(middle_point)-np.array(padd)),dtype=int)
high_border=np.array(np.array(low_border)+np.array(base_shape),dtype=int)
final_arr[:,:,:]= new_arr[low_border[0]:high_border[0],
low_border[1]:high_border[1],
low_border[2]:high_border[2]]
return final_arr
def map_image(img_arr,base_zoom,izoom,order,axial):
if axial:
base_zoom[2] = izoom[2]
print('Volume will be sample from %s to %s ' % (izoom, base_zoom))
resample_arr, izoom= resample(img_arr, spacing=np.array(izoom),
new_spacing=np.array(base_zoom), order=order)
resample_arr[resample_arr < 0] = 0
return resample_arr,izoom
def conform(img,flags,order,save_path,mod,axial=False):
"""
Args:
img: nibabel img: Loaded source image
flags: dict : Dictionary containing the image size, spacing and orientation
order: int : interpolation order (0=nearest,1=linear(default),2=quadratic,3=cubic)
Returns:
new_img: nibabel img : conformed nibabel image
"""
save=False
# check orientation LAS
img=check_orientation(img,base_ornt=flags['base_ornt'])
img_arr=img.get_data()
img_header = img.header
# check voxel sizer
i_zoom=img.header.get_zooms()
#check the spacing idx for interpolation
if axial:
idx=2
else:
idx=3
if not np.allclose(np.array(i_zoom)[:idx],np.array(flags['spacing'])[:idx],rtol=0.3):
img_arr,i_zoom= map_image(img_arr,flags['spacing'],i_zoom,order,axial)
save=True
ishape = img_arr.shape
# check dimensions
if int(ishape[0]) != int(flags['imgSize'][0]) or int(ishape[1]) != int(flags['imgSize'][1]) or int(ishape[2]) != int(flags['imgSize'][2]):
img_arr=map_size(img_arr,flags['imgSize'],axial)
save = True
img_header.set_data_shape(img_arr.shape)
img_header.set_zooms(i_zoom)
affine = img_header.get_qform()
affine[0][3] += ((flags['imgSize'][0] - ishape[0]) / 2 * i_zoom[0])
affine[1][3] -= ((flags['imgSize'][1] - ishape[1]) / 2 * i_zoom[1])
affine[2][3] -= ((flags['imgSize'][2] - ishape[2]) / 2 * i_zoom[2])
img_header.set_qform(affine)
new_img = nib.Nifti1Image(img_arr, affine, img_header)
#save images if modified
if save:
if not os.path.isdir(os.path.join(save_path, 'MRI')):
os.mkdir(os.path.join(save_path, 'MRI'))
mri_path = os.path.join(save_path, 'MRI')
if mod == 'fat':
new_img_path = os.path.join(mri_path, 'FatImaging_F.nii.gz')
else:
new_img_path = os.path.join(mri_path, 'FatImaging_W.nii.gz')
nib.save(new_img, new_img_path)
return new_img