[fb4aec]: / tool / Code / adipose_pipeline.py

Download this file

364 lines (259 with data), 13.8 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
# Copyright 2019 Population Health Sciences and Image Analysis, German Center for Neurodegenerative Diseases(DZNE)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import division
import sys
sys.path.append('./')
sys.path.append('../')
import os
import nibabel as nib
import pandas as pd
from Code.utilities.misc import locate_file
from Code.utilities.visualization_misc import multiview_plotting
from Code.utilities.metrics import calculate_statistics_v2
from Code.utilities.models import run_adipose_localization,run_adipose_segmentation
import numpy as np
from keras import backend as K
from Code.utilities.image_processing import largets_connected_componets,find_labels
from Code.utilities.conform import conform
def clean_segmentations(label_map):
new_label_map=np.copy(label_map)
new_label_map= largets_connected_componets(new_label_map)
return new_label_map
def extreme_AAT_increase_flag(predict_array,threshold=0.3):
extreme_increase_flag = False
for slice in range(1,(predict_array.shape[0]-1)) :
previous_sat =np.sum(predict_array[slice-1,:,:] == 1)
previous_vat =np.sum(predict_array[slice-1,:,:] == 2)
current_sat=np.sum(predict_array[slice,:,:] == 1)
current_vat =np.sum(predict_array[slice,:,:] == 2)
following_sat=np.sum(predict_array[slice+1,:,:] == 1)
following_vat=np.sum(predict_array[slice+1,:,:] == 2)
sat_threshold=current_sat*threshold
vat_threshold = current_vat * threshold
if np.abs(current_sat-previous_sat) > sat_threshold or np.abs(current_sat-following_sat) > sat_threshold:
extreme_increase_flag= 'SAT increase over the threshold'
elif np.abs(current_vat-previous_vat) > vat_threshold or np.abs(current_vat-following_vat) > vat_threshold:
extreme_increase_flag = 'VAT increase over the threshold'
return extreme_increase_flag
def stats_variable_initialization(nb_comparments,weighted=True):
# initialize Stats Variables
variable_columns = []
volume_variable_columns = ['VOL_cm3', 'SAT_VOL_cm3', 'VAT_VOL_cm3', 'AAT_VOL_cm3',
'VAT_VOL_TO_SAT_VOL', 'VAT_VOL_TO_AAT_VOL', 'SAT_VOL_TO_AAT_VOL']
w_volume_variable_columns= ['W_VOL_cm3','WSAT_VOL_cm3', 'WVAT_VOL_cm3',
'WAAT_VOL_cm3', 'WVAT_VOL_TO_WSAT_VOL', 'WVAT_VOL_TO_WAAT_VOL', 'WSAT_VOL_TO_WAAT_VOL']
area_variable_columns = ['HEIGHT_cm', 'AVG_AREA_cm2', 'AVG_PERIMETER_cm']
base_variable_len={}
base_variable_len['Area']=len(area_variable_columns)
base_variable_len['Volume']=len(volume_variable_columns)
base_variable_len['W_Volume']=len(w_volume_variable_columns)
roi_areas = ['wb']
if nb_comparments != 0:
# From Feet to Head
for i in range(int(nb_comparments), 0, -1):
roi_areas.append('Q' + str(i))
for roi in roi_areas:
for area_id in area_variable_columns:
variable_columns.append(roi + '_' + area_id)
for vol_id in volume_variable_columns:
variable_columns.append(roi + '_' + vol_id)
if weighted:
for w_vol_id in w_volume_variable_columns:
variable_columns.append(roi + '_' + w_vol_id)
variable_columns.insert(0, 'imageid')
variable_columns.insert(1, '#_Slices')
variable_columns.insert(2,'FLAGS')
return variable_columns,base_variable_len
def check_image_contrast(water_array,fat_array):
slice = fat_array.shape[0] // 2
water_slice=water_array[slice,20:-20,20:-20]
fat_slice=fat_array[slice,20:-20,20:-20]
intensity_max=np.max([np.max(water_slice),np.max(fat_slice)])
water_slice=water_slice/intensity_max
fat_slice=fat_slice/intensity_max
new_fat=np.zeros((fat_slice.shape[0],fat_slice.shape[1]))
new_fat[fat_slice >= (0.10 * np.max(fat_slice))] = 2
new_fat[fat_slice >= (0.30*np.max(fat_slice))] = 1
border_idx=np.where(new_fat == 2)
point_index=np.arange(0,len(border_idx[0]),10)
point_y=border_idx[0][point_index]
point_x=border_idx[1][point_index]
fat_count=0
no_fat_count=0
for j in range(len(point_x)):
value = fat_slice[point_y[j],point_x[j]] -water_slice[point_y[j],point_x[j]]
if value < 0 :
fat_count += 1
else:
no_fat_count += 1
if no_fat_count > fat_count or ((no_fat_count/fat_count) > 0.75):
FLAG='Check image contrast'
else:
FLAG = False
return FLAG
def check_flags(predicted_array,water_array,fat_array,ratio_vat_sat,threshold=0.30,sat_to_vat_threshold=2.0):
FLAG = check_image_contrast(water_array,fat_array)
if FLAG == False:
FLAG=extreme_AAT_increase_flag(predicted_array,threshold=threshold)
if ratio_vat_sat > sat_to_vat_threshold:
FLAG = 'High VAT to SAT ratio'
return FLAG
def run_adipose_pipeline(args,flags,save_path='/',data_path='/',id='Test'):
output_stats = 'AAT_stats.tsv'
output_pred_fat = 'AAT_pred.nii.gz'
output_pred = 'ALL_pred.nii.gz'
qc_images = []
print('-' * 30)
print('Loading Subject')
print(id)
sub = id
fat_file = locate_file('*'+str(args.fat_image), data_path)
water_file = locate_file('*'+str(args.water_image), data_path)
# Check fat
if fat_file:
print('-' * 30)
print('Loading Fat Image')
print(fat_file[0])
#Load Fat Images
fat_img = nib.load(fat_file[0])
ishape = fat_img.shape
#Check if data from example_data_folder was loaded : Only contains the value -9999
if len(np.unique(fat_img.get_data())) > 2:
if len(ishape) > 3 and ishape[3] != 1:
print('ERROR: Multiple input frames (' + format(fat_img.shape[3]) + ') not supported!')
else:
fat_img = conform(fat_img, flags=flags, order=args.order, save_path=save_path, mod='fat',
axial=args.axial)
fat_array = fat_img.get_data()
fat_array = np.swapaxes(fat_array, 0, 2)
fat_zooms = fat_img.header.get_zooms()
print('-' * 30)
print('Loading Water Image')
#Check water image
if not water_file:
weighted=False
print('No water image found, weighted volumes would not be calculated')
water_array=np.zeros(fat_array.shape)
else:
print(water_file[0])
weighted=True
water_img = nib.load(water_file[0])
ishape = fat_img.shape
if len(ishape) > 3 and ishape[3] != 1:
print('ERROR: Multiple input frames (' + format(water_img.shape[3]) + ') not supported!')
weighted = False
print('No water image found, weighted volumes would not be calculated')
water_array = np.zeros(fat_array.shape)
else:
water_img = conform(water_img, flags=flags, order=args.order, save_path=save_path, mod='water',
axial=args.axial)
water_array = water_img.get_data()
water_array = np.swapaxes(water_array, 0, 2)
variable_columns, base_variable_len = stats_variable_initialization(args.compartments,weighted)
ratio_position = variable_columns.index('wb_VAT_VOL_TO_SAT_VOL')
pixel_matrix = np.zeros((1, len(variable_columns)), dtype=object)
row_px = 0
img_spacing=np.copy(fat_zooms)
if not args.run_stats:
if args.run_localization:
high_idx,low_idx=run_adipose_localization(fat_array,flags)
K.clear_session()
else:
high_idx=fat_array.shape[0]
low_idx= 0
print('the index values are %d, %d' % (low_idx, high_idx))
# Image Segmentation
pred_array=run_adipose_segmentation(fat_array,flags,args)
K.clear_session()
else:
pred_file = locate_file('*AAT_pred.nii.gz', data_path)
if pred_file :
pred_img = nib.load(pred_file[0])
pred_array = pred_img.get_data()
pred_array = np.swapaxes(pred_array, 0, 2)
pred_zooms = pred_img.header.get_zooms()
img_spacing = np.copy(pred_zooms)
# img_spacing[0] = pred_zooms[2]
# img_spacing[2] = pred_zooms[0]
high_idx, low_idx = find_labels(pred_array)
else :
print('Subject has no prediction map, a ATT_pred.nii.gz file is required to run the stats option')
print('-' * 30)
print('ERROR: Subject doesnt have a AAT_pred.nii.gz')
print('-' * 30)
print('Calculating Stats')
pred_array[0:low_idx,:,:]=0
pred_array[high_idx:,:,:]=0
pred_array [low_idx:high_idx, :, :] = clean_segmentations(pred_array[low_idx:high_idx, :, :])
pixel_matrix[row_px:row_px + 1, 0] = sub
pixel_matrix[row_px:row_px + 1, 3:] = calculate_statistics_v2(pred_array[low_idx:high_idx, :, :],
water_array[low_idx:high_idx, :, :],
fat_array[low_idx:high_idx, :, :],
low_idx, high_idx, variable_columns[3:],
base_variable_len, img_spacing,
args.compartments, weighted=weighted)
pixel_matrix[row_px:row_px + 1, 1] = int(high_idx-low_idx)
pixel_matrix[row_px:row_px + 1, 2] = check_flags(pred_array[low_idx:high_idx, :, :],water_array=water_array,fat_array=fat_array,
ratio_vat_sat=pixel_matrix[row_px, ratio_position],
threshold=args.increase_threshold,sat_to_vat_threshold=args.sat_to_vat_threshold)
df = pd.DataFrame(pixel_matrix[row_px:row_px+1, :], columns=variable_columns)
if not os.path.isdir(os.path.join(save_path, 'Segmentations')):
os.mkdir(os.path.join(save_path, 'Segmentations'))
seg_path=os.path.join(save_path, 'Segmentations')
df.to_csv(seg_path+'/'+output_stats, sep='\t', index=False)
df.to_json(seg_path+ '/AAT_variables_summary.json', orient='records')
row_px += 1
# Modified images for display
disp_fat = np.flipud(fat_array[:])
disp_fat = np.fliplr(disp_fat[:])
disp_pred=np.copy(pred_array)
disp_pred = np.flipud(disp_pred)
disp_pred = np.fliplr(disp_pred)
#only display SAT and VAT
disp_pred[disp_pred>=3]=0
idx = (np.where(disp_pred > 0))
low_idx = np.min(idx[0])
high_idx = np.max(idx[0])
interval = (high_idx - low_idx) // 4
# Control images of the segmentation
if not args.control_images:
if not os.path.isdir(os.path.join(save_path, 'QC')):
os.mkdir(os.path.join(save_path, 'QC'))
for i in range(4):
control_point = [0, int(np.ceil(disp_fat.shape[1] / 2)), int(np.ceil(disp_fat.shape[2] / 2))]
control_point[0] = int(np.ceil(np.random.uniform(high_idx - interval * i, high_idx - interval * ((i + 1)))))
multiview_plotting(disp_fat, disp_pred, control_point, save_path+'/QC/QC_%s.png' % i,
classes=5, alpha=0.5, nbviews=3)
print('-' * 30)
print('Saving Segmentation')
# Save prediction
pred_array=np.swapaxes(pred_array,2,0)
pred_img = nib.Nifti1Image(pred_array, fat_img.affine, fat_img.header)
nib.save(pred_img, seg_path+'/'+output_pred)
pred_array[pred_array>=3]=0
pred_img = nib.Nifti1Image(pred_array, fat_img.affine, fat_img.header)
nib.save(pred_img, seg_path+'/'+output_pred_fat)
print('-' * 30)
print('Finish Subject %s' % sub)
print('-' * 30)
else :
print('ERROR: Input image empty \n'
'Note : Volumes from the example_data_folder are empty \n'
'The example_data_folder is only a ilustrative example on how volumes have to be organized for FatSegNet to work.')
print('Please provided your own dixon MR scans')
else:
print('')
print('-' * 30)
print('ERROR: Subject doesnt have a Fat Image named %s,\n'
'Please verified that the name provided to the -fat argument matches the one in the participants folder (default : FatImaging_F.nii.gz )'%str(args.fat_image))