|
a |
|
b/tool/Code/utilities/visualization_misc.py |
|
|
1 |
# Copyright 2019 Population Health Sciences and Image Analysis, German Center for Neurodegenerative Diseases(DZNE) |
|
|
2 |
# |
|
|
3 |
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
|
4 |
# you may not use this file except in compliance with the License. |
|
|
5 |
# You may obtain a copy of the License at |
|
|
6 |
# |
|
|
7 |
# http://www.apache.org/licenses/LICENSE-2.0 |
|
|
8 |
# |
|
|
9 |
# Unless required by applicable law or agreed to in writing, software |
|
|
10 |
# distributed under the License is distributed on an "AS IS" BASIS, |
|
|
11 |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
|
12 |
# See the License for the specific language governing permissions and |
|
|
13 |
# limitations under the License. |
|
|
14 |
|
|
|
15 |
import matplotlib |
|
|
16 |
matplotlib.use('agg') |
|
|
17 |
import matplotlib.pyplot as plt |
|
|
18 |
import numpy as np |
|
|
19 |
import matplotlib.gridspec as gridspec |
|
|
20 |
import matplotlib.cm as cm |
|
|
21 |
from matplotlib.colors import LinearSegmentedColormap |
|
|
22 |
import itertools |
|
|
23 |
|
|
|
24 |
def get_colors(inp, colormap, vmin=None, vmax=None): |
|
|
25 |
"""generate the normalize rgb values for matplolib |
|
|
26 |
""" |
|
|
27 |
norm = plt.Normalize(vmin, vmax) |
|
|
28 |
return colormap(norm(inp)) |
|
|
29 |
|
|
|
30 |
|
|
|
31 |
def multiview_plotting(data,labels,control_point, savepath,classes=5,alpha=0.5,nbviews=3,plot_labels=True,plot_control_point=True): |
|
|
32 |
"""Plot data and label in different views |
|
|
33 |
Args: |
|
|
34 |
data: Original 3D volume |
|
|
35 |
labels: Original labels for the 3d Volume |
|
|
36 |
control_point: select the center point where the different views are going to be created |
|
|
37 |
savepath:path where the image is going to be safe |
|
|
38 |
classes: number of classes in the labeles |
|
|
39 |
alpha: transparency of the labels on the original data |
|
|
40 |
nbviews: 1 only axial view,2 axial and frontal, 3 the three views |
|
|
41 |
plot_labels: True plot labels, False only plot data |
|
|
42 |
|
|
|
43 |
|
|
|
44 |
Returns: |
|
|
45 |
An images with the diffent views and the corresponding label |
|
|
46 |
""" |
|
|
47 |
# Create the colormap for the labels |
|
|
48 |
dz=np.arange(classes) |
|
|
49 |
colors = get_colors(dz, plt.cm.jet) |
|
|
50 |
#replace first color for black |
|
|
51 |
colors[0, 0:3] = [0, 0, 0] |
|
|
52 |
my_cm=LinearSegmentedColormap.from_list('mylist',colors,classes) |
|
|
53 |
plt.ioff() |
|
|
54 |
if plot_labels: |
|
|
55 |
grid_size = [2, nbviews] |
|
|
56 |
else: |
|
|
57 |
grid_size = [1, nbviews] |
|
|
58 |
#fig = plt.figure(dpi=600) |
|
|
59 |
fig = plt.gcf() |
|
|
60 |
|
|
|
61 |
|
|
|
62 |
outer_grid = gridspec.GridSpec(grid_size[0], grid_size[1], wspace=0.05, hspace=0.0005) |
|
|
63 |
index = 0 |
|
|
64 |
for i in range(nbviews): |
|
|
65 |
if i == 0 : |
|
|
66 |
ax = plt.subplot(outer_grid[i]) |
|
|
67 |
ax.imshow(data[control_point[0], :, :], cmap=cm.gray) |
|
|
68 |
if plot_control_point: |
|
|
69 |
ax.scatter(y=control_point[1], x=control_point[2], c='r', s=2) |
|
|
70 |
ax.set_xticklabels([]) |
|
|
71 |
ax.set_yticklabels([]) |
|
|
72 |
if plot_labels: |
|
|
73 |
ax = plt.subplot(outer_grid[i+nbviews]) |
|
|
74 |
ax.imshow(data[control_point[0], :, :], cmap=cm.gray) |
|
|
75 |
ax.imshow(labels[control_point[0], :, :],vmin=0,vmax=classes, cmap=my_cm,alpha=alpha) |
|
|
76 |
if plot_control_point: |
|
|
77 |
ax.scatter(y=control_point[1], x=control_point[2], c='r', s=2) |
|
|
78 |
ax.set_xticklabels([]) |
|
|
79 |
ax.set_yticklabels([]) |
|
|
80 |
|
|
|
81 |
elif i == 1: |
|
|
82 |
ax = plt.subplot(outer_grid[i]) |
|
|
83 |
ax.imshow(data[:, control_point[1], :], cmap=cm.gray,aspect=(data.shape[1]/data.shape[0])) |
|
|
84 |
if plot_control_point: |
|
|
85 |
ax.scatter(y=control_point[0], x=control_point[2], c='r', s=2) |
|
|
86 |
ax.set_xticklabels([]) |
|
|
87 |
ax.set_yticklabels([]) |
|
|
88 |
if plot_labels: |
|
|
89 |
ax = plt.subplot(outer_grid[i+nbviews]) |
|
|
90 |
ax.imshow(data[:, control_point[1], :], cmap=cm.gray,aspect=(data.shape[1]/data.shape[0])) |
|
|
91 |
ax.imshow(labels[:, control_point[1], :],vmin=0,vmax=classes, cmap=my_cm,alpha=alpha,aspect=(data.shape[1]/data.shape[0])) |
|
|
92 |
if plot_control_point: |
|
|
93 |
ax.scatter(y=control_point[0], x=control_point[2], c='r', s=2) |
|
|
94 |
ax.set_xticklabels([]) |
|
|
95 |
ax.set_yticklabels([]) |
|
|
96 |
|
|
|
97 |
elif i == 2: |
|
|
98 |
img=np.zeros((data.shape[0],data.shape[2])) |
|
|
99 |
diff_spacing=int((data.shape[2]-data.shape[1])/2) |
|
|
100 |
img[:,diff_spacing:data.shape[2]-diff_spacing]=data[:, :, control_point[2]] |
|
|
101 |
|
|
|
102 |
ax = plt.subplot(outer_grid[i]) |
|
|
103 |
ax.imshow(img, cmap=cm.gray,aspect=(data.shape[1]/data.shape[0])) |
|
|
104 |
if plot_control_point: |
|
|
105 |
ax.scatter(y=control_point[0], x=control_point[2], c='r', s=2) |
|
|
106 |
ax.set_xticklabels([]) |
|
|
107 |
ax.set_yticklabels([]) |
|
|
108 |
if plot_labels: |
|
|
109 |
img_label = np.zeros((data.shape[0], data.shape[2])) |
|
|
110 |
img_label[:, diff_spacing:data.shape[2] - diff_spacing] = labels[:, :, control_point[2]] |
|
|
111 |
ax = plt.subplot(outer_grid[i + nbviews]) |
|
|
112 |
ax.imshow(img, cmap=cm.gray, aspect=(data.shape[1] / data.shape[0])) |
|
|
113 |
ax.imshow(img_label,vmin=0,vmax=classes, cmap=my_cm,alpha=alpha, aspect=(data.shape[1] / data.shape[0])) |
|
|
114 |
if plot_control_point: |
|
|
115 |
ax.scatter(y=control_point[0], x=control_point[2], c='r', s=2) |
|
|
116 |
ax.set_xticklabels([]) |
|
|
117 |
ax.set_yticklabels([]) |
|
|
118 |
|
|
|
119 |
#fig.subplots_adjust(wspace=0.001, hspace=0.001) |
|
|
120 |
|
|
|
121 |
plt.subplots_adjust(0,0,1,1,0,0) |
|
|
122 |
for ax in fig.axes: |
|
|
123 |
ax.axis('off') |
|
|
124 |
ax.margins(0,0) |
|
|
125 |
ax.xaxis.set_major_locator(plt.NullLocator()) |
|
|
126 |
ax.yaxis.set_major_locator(plt.NullLocator()) |
|
|
127 |
|
|
|
128 |
plt.savefig(savepath, transparent=True,bbbox_inches='tight',pad_inches=0,dpi=300) |
|
|
129 |
plt.close(fig) |
|
|
130 |
|
|
|
131 |
|