[d29046]: / Wiener.m

Download this file

163 lines (129 with data), 4.4 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
function [output,time] = Wiener(signal,fs,type,IS)
if (nargin<4 || isstruct(IS))
IS=.25; %Initial Silence or Noise Only part in seconds
end
W=fix(.025*fs); %Window length is 25 ms
SP=.4; %Shift percentage is 40% (10ms) %Overlap-Add method works good with this value(.4)
wnd=hann(W);
pre_emph=0;
signal=filter([1 -pre_emph],1,signal);
NIS=fix((IS*fs-W)/(SP*W) +1);%number of initial silence segments
y=segment(signal,W,SP,wnd); % This function chops the signal into frames
Y=fft(y);
YPhase=angle(Y(1:fix(end/2)+1,:)); %Noisy Speech Phase
Y=abs(Y(1:fix(end/2)+1,:));%Specrogram
numberOfFrames=size(Y,2);
FreqResol=size(Y,1);
N=mean(Y(:,1:NIS)')'; %initial Noise Power Spectrum mean
LambdaD=mean((Y(:,1:NIS)').^2)';%initial Noise Power Spectrum variance
alpha=.99; %used in smoothing xi (For Deciesion Directed method for estimation of A Priori SNR)
NoiseCounter=0;
NoiseLength=9;%This is a smoothing factor for the noise updating
G=ones(size(N));%Initial Gain used in calculation of the new xi
Gamma=G;
X=zeros(size(Y)); % Initialize X (memory allocation)
h=waitbar(0,'Wait...');
for i=1:numberOfFrames
%%%%%%%%%%%%%%%%VAD and Noise Estimation START
if i<=NIS % If initial silence ignore VAD
SpeechFlag=0;
NoiseCounter=100;
else % Else Do VAD
[NoiseFlag, SpeechFlag, NoiseCounter, Dist]=vad(Y(:,i),N,NoiseCounter); %Magnitude Spectrum Distance VAD
end
if SpeechFlag==0 % If not Speech Update Noise Parameters
N=(NoiseLength*N+Y(:,i))/(NoiseLength+1); %Update and smooth noise mean
LambdaD=(NoiseLength*LambdaD+(Y(:,i).^2))./(1+NoiseLength); %Update and smooth noise variance
end
%%%%%%%%%%%%%%%%%%%VAD and Noise Estimation END
gammaNew=(Y(:,i).^2)./LambdaD; %A postiriori SNR
xi=alpha*(G.^2).*Gamma+(1-alpha).*max(gammaNew-1,0); %Decision Directed Method for A Priori SNR
Gamma=gammaNew;
G=(xi./(xi+1));
X(:,i)=G.*Y(:,i); %Obtain the new Cleaned value
waitbar(i/numberOfFrames,h,num2str(fix(100*i/numberOfFrames)));
end
close(h);
output = OverlapAdd2(X,YPhase,W,SP*W); %Overlap-add Synthesis of speech
output = filter(1,[1 -pre_emph],output); %Undo the effect of Pre-emphasis
num = [0.00247553277809987,0.00495106555619995,0.00247553277809975];
den = [1,-1.80098109524571,0.810883226358106];
output = filter(num,den,output);
time = (0:1/fs:(size(output,1)-1)/fs);
if type == 1
output = 100.*output;
end
function ReconstructedSignal=OverlapAdd2(XNEW,yphase,windowLen,ShiftLen)
if nargin<2
yphase=angle(XNEW);
end
if nargin<3
windowLen=size(XNEW,1)*2;
end
if nargin<4
ShiftLen=windowLen/2;
end
if fix(ShiftLen)~=ShiftLen
ShiftLen=fix(ShiftLen);
disp('The shift length have to be an integer as it is the number of samples.')
disp(['shift length is fixed to ' num2str(ShiftLen)])
end
[FreqRes, FrameNum]=size(XNEW);
Spec=XNEW.*exp(1i*yphase);
if mod(windowLen,2) %if FreqResol is odd
Spec=[Spec;flipud(conj(Spec(2:end,:)))];
else
Spec=[Spec;flipud(conj(Spec(2:end-1,:)))];
end
sig=zeros((FrameNum-1)*ShiftLen+windowLen,1);
weight=sig;
for i=1:FrameNum
start=(i-1)*ShiftLen+1;
spec=Spec(:,i);
sig(start:start+windowLen-1)=sig(start:start+windowLen-1)+real(ifft(spec,windowLen));
end
ReconstructedSignal=sig;
function Seg=segment(signal,W,SP,Window)
if nargin<3
SP=.4;
end
if nargin<2
W=256;
end
if nargin<4
Window=hamming(W);
end
Window=Window(:); %make it a column vector
L=length(signal);
SP=fix(W.*SP);
N=fix((L-W)/SP +1); %number of segments
Index=(repmat(1:W,N,1)+repmat((0:(N-1))'*SP,1,W))';
hw=repmat(Window,1,N);
Seg=signal(Index).*hw;
function [NoiseFlag, SpeechFlag, NoiseCounter, Dist]=vad(signal,noise,NoiseCounter,NoiseMargin,Hangover)
if nargin<4
NoiseMargin=3;
end
if nargin<5
Hangover=8;
end
if nargin<3
NoiseCounter=0;
end
FreqResol=length(signal);
SpectralDist= 20*(log10(signal)-log10(noise));
SpectralDist(SpectralDist<0)=0;
Dist=mean(SpectralDist);
if (Dist < NoiseMargin)
NoiseFlag=1;
NoiseCounter=NoiseCounter+1;
else
NoiseFlag=0;
NoiseCounter=0;
end
% Detect noise only periods and attenuate the signal
if (NoiseCounter > Hangover)
SpeechFlag=0;
else
SpeechFlag=1;
end