import os
import argparse
import logging
import importlib
import torch
import torch.nn as nn
import torch.optim as optim
import torch.distributed as dist
from torch.utils.data import DataLoader
import torchvision
from tensorboardX import SummaryWriter
import _init_paths
from libs.configs.config_acdc import cfg
from libs.datasets import AcdcDataset
from libs.datasets import joint_augment as joint_augment
from libs.datasets import augment as standard_augment
from libs.datasets.collate_batch import BatchCollator
# from libs.losses.df_loss import EuclideanLossWithOHEM
# from libs.losses.surface_loss import SurfaceLoss
from libs.losses.create_losses import Total_loss
import train_utils.train_utils as train_utils
from train_utils.train_utils import load_checkpoint
from utils.init_net import init_weights
from utils.comm import get_rank, synchronize
parser = argparse.ArgumentParser(description="arg parser")
parser.add_argument("--local_rank", type=int, default=0, required=True, help="device_ids of DistributedDataParallel")
parser.add_argument("--batch_size", type=int, default=32, required=False, help="batch size for training")
parser.add_argument("--epochs", type=int, default=50, required=False, help="Number of epochs to train for")
parser.add_argument('--workers', type=int, default=4, help='number of workers for dataloader')
parser.add_argument("--ckpt_save_interval", type=int, default=5, help="number of training epochs")
parser.add_argument('--output_dir', type=str, default=None, help='specify an output directory if needed')
parser.add_argument('--mgpus', type=str, default=None, help='whether to use multiple gpu')
parser.add_argument("--ckpt", type=str, default=None, help="continue training from this checkpoint")
parser.add_argument('--train_with_eval', action='store_true', default=False, help='whether to train with evaluation')
args = parser.parse_args()
FILE_DIR = os.path.dirname(os.path.abspath(__file__))
if args.mgpus is not None:
os.environ["CUDA_VISIBLE_DEVICES"] = args.mgpus
def create_logger(log_file, dist_rank):
if dist_rank > 0:
logger = logging.getLogger(__name__)
logger.setLevel(logging.WARNING)
return logger
log_format = '%(asctime)s %(levelname)5s %(message)s'
logging.basicConfig(level=logging.DEBUG, format=log_format, filename=log_file)
console = logging.StreamHandler()
console.setLevel(logging.DEBUG)
console.setFormatter(logging.Formatter(log_format))
logging.getLogger(__name__).addHandler(console)
return logging.getLogger(__name__)
def create_dataloader(logger):
train_joint_transform = joint_augment.Compose([
joint_augment.To_PIL_Image(),
joint_augment.RandomAffine(0,translate=(0.125, 0.125)),
joint_augment.RandomRotate((-180,180)),
joint_augment.FixResize(256)
])
transform = standard_augment.Compose([
standard_augment.to_Tensor(),
standard_augment.normalize([cfg.DATASET.MEAN], [cfg.DATASET.STD])])
target_transform = standard_augment.Compose([
standard_augment.to_Tensor()])
if cfg.DATASET.NAME == 'acdc':
train_set = AcdcDataset(data_list=cfg.DATASET.TRAIN_LIST,
df_used=cfg.DATASET.DF_USED, df_norm=cfg.DATASET.DF_NORM,
boundary=cfg.DATASET.BOUNDARY,
joint_augment=train_joint_transform,
augment=transform, target_augment=target_transform)
train_sampler = torch.utils.data.distributed.DistributedSampler(train_set,
num_replicas=dist.get_world_size(), rank=dist.get_rank())
train_loader = DataLoader(train_set, batch_size=args.batch_size, pin_memory=True,
num_workers=args.workers, shuffle=False, sampler=train_sampler,
collate_fn=BatchCollator(size_divisible=32, df_used=cfg.DATASET.DF_USED,
boundary=cfg.DATASET.BOUNDARY))
if args.train_with_eval:
eval_transform = joint_augment.Compose([
joint_augment.To_PIL_Image(),
joint_augment.FixResize(256),
joint_augment.To_Tensor()])
evalImg_transform = standard_augment.Compose([
standard_augment.normalize([cfg.DATASET.MEAN], [cfg.DATASET.STD])])
if cfg.DATASET.NAME == 'acdc':
test_set = AcdcDataset(data_list=cfg.DATASET.TEST_LIST,
df_used=cfg.DATASET.DF_USED, df_norm=cfg.DATASET.DF_NORM,
boundary=cfg.DATASET.BOUNDARY,
joint_augment=eval_transform,
augment=evalImg_transform)
test_sampler = torch.utils.data.distributed.DistributedSampler(test_set,
num_replicas=dist.get_world_size(), rank=dist.get_rank())
test_loader = DataLoader(test_set, batch_size=args.batch_size, pin_memory=True,
num_workers=args.workers, shuffle=False, sampler=test_sampler,
collate_fn=BatchCollator(size_divisible=32, df_used=cfg.DATASET.DF_USED,
boundary=cfg.DATASET.BOUNDARY))
else:
test_loader = None
return train_loader, test_loader
def create_optimizer(model):
if cfg.TRAIN.OPTIMIZER == "adam":
optimizer = optim.Adam(model.parameters(), lr=cfg.TRAIN.LR, weight_decay=cfg.TRAIN.WEIGHT_DECAY)
elif cfg.TRAIN.OPTIMIZER == "sgd":
optimizer = optim.SGD(model.parameters(), lr=cfg.TRAIN.LR, weight_decay=cfg.TRAIN.WEIGHT_DECAY,
momentum=cfg.TRAIN.MOMENTUM)
else:
raise NotImplementedError
return optimizer
def create_scheduler(model, optimizer, total_steps, last_epoch):
def lr_lbmd(cur_epoch):
cur_decay = 1
for decay_step in cfg.TRAIN.DECAY_STEP_LIST:
if cur_epoch >= decay_step:
cur_decay = cur_decay * cfg.TRAIN.LR_DECAY
return max(cur_decay, cfg.TRAIN.LR_CLIP / cfg.TRAIN.LR)
lr_scheduler = optim.lr_scheduler.LambdaLR(optimizer, lr_lbmd, last_epoch=last_epoch)
return lr_scheduler
def create_model(cfg):
network = cfg.TRAIN.NET
module = 'libs.network.' + network[:network.rfind('.')]
model = network[network.rfind('.')+1:]
mod = importlib.import_module(module)
mod_func = importlib.import_module('libs.network.train_functions')
net_func = getattr(mod, model)
net = net_func(num_class=cfg.DATASET.NUM_CLASS)
if network == 'unet.U_Net':
train_func = getattr(mod_func, 'model_fn_decorator')
elif network == 'unet_df.U_NetDF':
net = net_func(selfeat=cfg.MODEL.SELFEATURE, num_class=cfg.DATASET.NUM_CLASS, shift_n=cfg.MODEL.SHIFT_N, auxseg=cfg.MODEL.AUXSEG)
train_func = getattr(mod_func, 'model_DF_decorator')
return net, train_func
def train():
torch.cuda.set_device(args.local_rank)
dist.init_process_group(backend="nccl", init_method="env://")
synchronize()
# create dataloader & network & optimizer
model, model_fn_decorator = create_model(cfg)
init_weights(model, init_type='kaiming')
# model.to('cuda')
model.cuda()
model = nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank], output_device=args.local_rank)
root_result_dir = args.output_dir
os.makedirs(root_result_dir, exist_ok=True)
log_file = os.path.join(root_result_dir, "log_train.txt")
logger = create_logger(log_file, get_rank())
logger.info("**********************Start logging**********************")
# log to file
gpu_list = os.environ['CUDA_VISIBLE_DEVICES'] if 'CUDA_VISIBLE_DEVICES' in os.environ.keys() else 'ALL'
logger.info("CUDA_VISIBLE_DEVICES=%s" % gpu_list)
for key, val in vars(args).items():
logger.info("{:16} {}".format(key, val))
logger.info("***********************config infos**********************")
for key, val in vars(cfg).items():
logger.info("{:16} {}".format(key, val))
# log tensorboard
if get_rank() == 0:
tb_log = SummaryWriter(log_dir=os.path.join(root_result_dir, "tensorboard"))
else:
tb_log = None
train_loader, test_loader = create_dataloader(logger)
optimizer = create_optimizer(model)
# load checkpoint if it is possible
start_epoch = it = best_res = 0
last_epoch = -1
if args.ckpt is not None:
pure_model = model.module if isinstance(model, (torch.nn.DataParallel, torch.nn.parallel.DistributedDataParallel)) else model
it, start_epoch, best_res = load_checkpoint(pure_model, optimizer, args.ckpt, logger)
last_epoch = start_epoch + 1
lr_scheduler = create_scheduler(model, optimizer, total_steps=len(train_loader)*args.epochs,
last_epoch=last_epoch)
if cfg.DATASET.DF_USED:
criterion = Total_loss(boundary=cfg.DATASET.BOUNDARY)
else:
criterion = nn.CrossEntropyLoss()
# start training
logger.info('**********************Start training**********************')
ckpt_dir = os.path.join(root_result_dir, "ckpt")
os.makedirs(ckpt_dir, exist_ok=True)
trainer = train_utils.Trainer(model,
model_fn=model_fn_decorator(),
criterion=criterion,
optimizer=optimizer,
ckpt_dir=ckpt_dir,
lr_scheduler=lr_scheduler,
model_fn_eval=model_fn_decorator(),
tb_log=tb_log,
logger=logger,
eval_frequency=1,
grad_norm_clip=cfg.TRAIN.GRAD_NORM_CLIP,
cfg=cfg)
trainer.train(start_it=it,
start_epoch=start_epoch,
n_epochs=args.epochs,
train_loader=train_loader,
test_loader=test_loader,
ckpt_save_interval=args.ckpt_save_interval,
lr_scheduler_each_iter=False,
best_res=best_res)
logger.info('**********************End training**********************')
# python -m torch.distributed.launch --nproc_per_node 2 --master_port $RANDOM tools/train.py --batch_size 20 --mgpus 2,3 --output_dir logs/... --train_with_eval
if __name__ == "__main__":
train()