[98e649]: / tools / train.py

Download this file

245 lines (199 with data), 10.8 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
import os
import argparse
import logging
import importlib
import torch
import torch.nn as nn
import torch.optim as optim
import torch.distributed as dist
from torch.utils.data import DataLoader
import torchvision
from tensorboardX import SummaryWriter
import _init_paths
from libs.configs.config_acdc import cfg
from libs.datasets import AcdcDataset
from libs.datasets import joint_augment as joint_augment
from libs.datasets import augment as standard_augment
from libs.datasets.collate_batch import BatchCollator
# from libs.losses.df_loss import EuclideanLossWithOHEM
# from libs.losses.surface_loss import SurfaceLoss
from libs.losses.create_losses import Total_loss
import train_utils.train_utils as train_utils
from train_utils.train_utils import load_checkpoint
from utils.init_net import init_weights
from utils.comm import get_rank, synchronize
parser = argparse.ArgumentParser(description="arg parser")
parser.add_argument("--local_rank", type=int, default=0, required=True, help="device_ids of DistributedDataParallel")
parser.add_argument("--batch_size", type=int, default=32, required=False, help="batch size for training")
parser.add_argument("--epochs", type=int, default=50, required=False, help="Number of epochs to train for")
parser.add_argument('--workers', type=int, default=4, help='number of workers for dataloader')
parser.add_argument("--ckpt_save_interval", type=int, default=5, help="number of training epochs")
parser.add_argument('--output_dir', type=str, default=None, help='specify an output directory if needed')
parser.add_argument('--mgpus', type=str, default=None, help='whether to use multiple gpu')
parser.add_argument("--ckpt", type=str, default=None, help="continue training from this checkpoint")
parser.add_argument('--train_with_eval', action='store_true', default=False, help='whether to train with evaluation')
args = parser.parse_args()
FILE_DIR = os.path.dirname(os.path.abspath(__file__))
if args.mgpus is not None:
os.environ["CUDA_VISIBLE_DEVICES"] = args.mgpus
def create_logger(log_file, dist_rank):
if dist_rank > 0:
logger = logging.getLogger(__name__)
logger.setLevel(logging.WARNING)
return logger
log_format = '%(asctime)s %(levelname)5s %(message)s'
logging.basicConfig(level=logging.DEBUG, format=log_format, filename=log_file)
console = logging.StreamHandler()
console.setLevel(logging.DEBUG)
console.setFormatter(logging.Formatter(log_format))
logging.getLogger(__name__).addHandler(console)
return logging.getLogger(__name__)
def create_dataloader(logger):
train_joint_transform = joint_augment.Compose([
joint_augment.To_PIL_Image(),
joint_augment.RandomAffine(0,translate=(0.125, 0.125)),
joint_augment.RandomRotate((-180,180)),
joint_augment.FixResize(256)
])
transform = standard_augment.Compose([
standard_augment.to_Tensor(),
standard_augment.normalize([cfg.DATASET.MEAN], [cfg.DATASET.STD])])
target_transform = standard_augment.Compose([
standard_augment.to_Tensor()])
if cfg.DATASET.NAME == 'acdc':
train_set = AcdcDataset(data_list=cfg.DATASET.TRAIN_LIST,
df_used=cfg.DATASET.DF_USED, df_norm=cfg.DATASET.DF_NORM,
boundary=cfg.DATASET.BOUNDARY,
joint_augment=train_joint_transform,
augment=transform, target_augment=target_transform)
train_sampler = torch.utils.data.distributed.DistributedSampler(train_set,
num_replicas=dist.get_world_size(), rank=dist.get_rank())
train_loader = DataLoader(train_set, batch_size=args.batch_size, pin_memory=True,
num_workers=args.workers, shuffle=False, sampler=train_sampler,
collate_fn=BatchCollator(size_divisible=32, df_used=cfg.DATASET.DF_USED,
boundary=cfg.DATASET.BOUNDARY))
if args.train_with_eval:
eval_transform = joint_augment.Compose([
joint_augment.To_PIL_Image(),
joint_augment.FixResize(256),
joint_augment.To_Tensor()])
evalImg_transform = standard_augment.Compose([
standard_augment.normalize([cfg.DATASET.MEAN], [cfg.DATASET.STD])])
if cfg.DATASET.NAME == 'acdc':
test_set = AcdcDataset(data_list=cfg.DATASET.TEST_LIST,
df_used=cfg.DATASET.DF_USED, df_norm=cfg.DATASET.DF_NORM,
boundary=cfg.DATASET.BOUNDARY,
joint_augment=eval_transform,
augment=evalImg_transform)
test_sampler = torch.utils.data.distributed.DistributedSampler(test_set,
num_replicas=dist.get_world_size(), rank=dist.get_rank())
test_loader = DataLoader(test_set, batch_size=args.batch_size, pin_memory=True,
num_workers=args.workers, shuffle=False, sampler=test_sampler,
collate_fn=BatchCollator(size_divisible=32, df_used=cfg.DATASET.DF_USED,
boundary=cfg.DATASET.BOUNDARY))
else:
test_loader = None
return train_loader, test_loader
def create_optimizer(model):
if cfg.TRAIN.OPTIMIZER == "adam":
optimizer = optim.Adam(model.parameters(), lr=cfg.TRAIN.LR, weight_decay=cfg.TRAIN.WEIGHT_DECAY)
elif cfg.TRAIN.OPTIMIZER == "sgd":
optimizer = optim.SGD(model.parameters(), lr=cfg.TRAIN.LR, weight_decay=cfg.TRAIN.WEIGHT_DECAY,
momentum=cfg.TRAIN.MOMENTUM)
else:
raise NotImplementedError
return optimizer
def create_scheduler(model, optimizer, total_steps, last_epoch):
def lr_lbmd(cur_epoch):
cur_decay = 1
for decay_step in cfg.TRAIN.DECAY_STEP_LIST:
if cur_epoch >= decay_step:
cur_decay = cur_decay * cfg.TRAIN.LR_DECAY
return max(cur_decay, cfg.TRAIN.LR_CLIP / cfg.TRAIN.LR)
lr_scheduler = optim.lr_scheduler.LambdaLR(optimizer, lr_lbmd, last_epoch=last_epoch)
return lr_scheduler
def create_model(cfg):
network = cfg.TRAIN.NET
module = 'libs.network.' + network[:network.rfind('.')]
model = network[network.rfind('.')+1:]
mod = importlib.import_module(module)
mod_func = importlib.import_module('libs.network.train_functions')
net_func = getattr(mod, model)
net = net_func(num_class=cfg.DATASET.NUM_CLASS)
if network == 'unet.U_Net':
train_func = getattr(mod_func, 'model_fn_decorator')
elif network == 'unet_df.U_NetDF':
net = net_func(selfeat=cfg.MODEL.SELFEATURE, num_class=cfg.DATASET.NUM_CLASS, shift_n=cfg.MODEL.SHIFT_N, auxseg=cfg.MODEL.AUXSEG)
train_func = getattr(mod_func, 'model_DF_decorator')
return net, train_func
def train():
torch.cuda.set_device(args.local_rank)
dist.init_process_group(backend="nccl", init_method="env://")
synchronize()
# create dataloader & network & optimizer
model, model_fn_decorator = create_model(cfg)
init_weights(model, init_type='kaiming')
# model.to('cuda')
model.cuda()
model = nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank], output_device=args.local_rank)
root_result_dir = args.output_dir
os.makedirs(root_result_dir, exist_ok=True)
log_file = os.path.join(root_result_dir, "log_train.txt")
logger = create_logger(log_file, get_rank())
logger.info("**********************Start logging**********************")
# log to file
gpu_list = os.environ['CUDA_VISIBLE_DEVICES'] if 'CUDA_VISIBLE_DEVICES' in os.environ.keys() else 'ALL'
logger.info("CUDA_VISIBLE_DEVICES=%s" % gpu_list)
for key, val in vars(args).items():
logger.info("{:16} {}".format(key, val))
logger.info("***********************config infos**********************")
for key, val in vars(cfg).items():
logger.info("{:16} {}".format(key, val))
# log tensorboard
if get_rank() == 0:
tb_log = SummaryWriter(log_dir=os.path.join(root_result_dir, "tensorboard"))
else:
tb_log = None
train_loader, test_loader = create_dataloader(logger)
optimizer = create_optimizer(model)
# load checkpoint if it is possible
start_epoch = it = best_res = 0
last_epoch = -1
if args.ckpt is not None:
pure_model = model.module if isinstance(model, (torch.nn.DataParallel, torch.nn.parallel.DistributedDataParallel)) else model
it, start_epoch, best_res = load_checkpoint(pure_model, optimizer, args.ckpt, logger)
last_epoch = start_epoch + 1
lr_scheduler = create_scheduler(model, optimizer, total_steps=len(train_loader)*args.epochs,
last_epoch=last_epoch)
if cfg.DATASET.DF_USED:
criterion = Total_loss(boundary=cfg.DATASET.BOUNDARY)
else:
criterion = nn.CrossEntropyLoss()
# start training
logger.info('**********************Start training**********************')
ckpt_dir = os.path.join(root_result_dir, "ckpt")
os.makedirs(ckpt_dir, exist_ok=True)
trainer = train_utils.Trainer(model,
model_fn=model_fn_decorator(),
criterion=criterion,
optimizer=optimizer,
ckpt_dir=ckpt_dir,
lr_scheduler=lr_scheduler,
model_fn_eval=model_fn_decorator(),
tb_log=tb_log,
logger=logger,
eval_frequency=1,
grad_norm_clip=cfg.TRAIN.GRAD_NORM_CLIP,
cfg=cfg)
trainer.train(start_it=it,
start_epoch=start_epoch,
n_epochs=args.epochs,
train_loader=train_loader,
test_loader=test_loader,
ckpt_save_interval=args.ckpt_save_interval,
lr_scheduler_each_iter=False,
best_res=best_res)
logger.info('**********************End training**********************')
# python -m torch.distributed.launch --nproc_per_node 2 --master_port $RANDOM tools/train.py --batch_size 20 --mgpus 2,3 --output_dir logs/... --train_with_eval
if __name__ == "__main__":
train()