[98e649]: / tools / test_df_vis.py

Download this file

243 lines (197 with data), 9.7 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
import os
import argparse
import numpy as np
import cv2
import logging
import math
import _init_paths
from libs.network import U_Net, U_NetDF
from libs.datasets import AcdcDataset
import libs.datasets.joint_augment as joint_augment
import libs.datasets.augment as standard_augment
from libs.datasets.collate_batch import BatchCollator
from libs.configs.config_acdc import cfg
from train_utils.train_utils import load_checkpoint
from utils.metrics import dice
from utils.vis_utils import mask2png, masks_to_contours, apply_mask, img_mask_png
parser = argparse.ArgumentParser(description="arg parser")
parser.add_argument('--used_df', type=str, default=False, help='whether to use df')
parser.add_argument('--selfeat', action='store_true', default=False, help='whether to use feature select')
parser.add_argument('--mgpus', type=str, default=None, required=True, help='whether to use multiple gpu')
parser.add_argument('--model_path1', type=str, default=None, help='whether to train with evaluation')
parser.add_argument('--model_path2', type=str, default=None, help='whether to train with evaluation')
parser.add_argument('--batch_size', type=int, default=1, help='batch size for evaluation')
parser.add_argument('--workers', type=int, default=4, help='number of workers for dataloader')
parser.add_argument('--output_dir', type=str, default=None, required=True, help='specify an output directory if needed')
parser.add_argument('--log_file', type=str, default="../log_evalation.txt", help="the file to write logging")
parser.add_argument('--vis', action='store_true', default=False, help="weather to save test result images")
args = parser.parse_args()
if args.mgpus is not None:
os.environ["CUDA_VISIBLE_DEVICES"] = args.mgpus
def create_logger(log_file):
log_format = '%(asctime)s %(levelname)5s %(message)s'
logging.basicConfig(level=logging.DEBUG, format=log_format, filename=log_file)
console = logging.StreamHandler()
console.setLevel(logging.DEBUG)
console.setFormatter(logging.Formatter(log_format))
logging.getLogger(__name__).addHandler(console)
return logging.getLogger(__name__)
def create_dataloader():
eval_transform = joint_augment.Compose([
joint_augment.To_PIL_Image(),
joint_augment.FixResize(256),
joint_augment.To_Tensor()])
evalImg_transform = standard_augment.Compose([
standard_augment.normalize([cfg.DATASET.MEAN], [cfg.DATASET.STD])])
if cfg.DATASET.NAME == "acdc":
test_set = AcdcDataset(cfg.DATASET.TEST_LIST, df_used=True, joint_augment=eval_transform,
augment=evalImg_transform)
test_loader = DataLoader(test_set, batch_size=1, pin_memory=True,
num_workers=args.workers, shuffle=False,
collate_fn=BatchCollator(size_divisible=32, df_used=True))
return test_loader, test_set
def cal_perfer(preds, masks, tb_dict):
LV_dice = [] # 1
MYO_dice = [] # 2
RV_dice = [] # 3
for i in range(preds.shape[0]):
LV_dice.append(dice(preds[i,1,:,:],masks[i,1,:,:]))
RV_dice.append(dice(preds[i, 3, :, :], masks[i, 3, :, :]))
MYO_dice.append(dice(preds[i, 2, :, :], masks[i, 2, :, :]))
# LV_dice.append(dice(preds[i, 3,:,:],masks[i,1,:,:]))
# RV_dice.append(dice(preds[i, 1, :, :], masks[i, 3, :, :]))
# MYO_dice.append(dice(preds[i, 2, :, :], masks[i, 2, :, :]))
tb_dict["LV_dice"].append(np.mean(LV_dice))
tb_dict["RV_dice"].append(np.mean(RV_dice))
tb_dict["MYO_dice"].append(np.mean(MYO_dice))
return np.mean(LV_dice), np.mean(RV_dice), np.mean(MYO_dice)
def make_one_hot(input, num_classes):
"""Convert class index tensor to one hot encoding tensor.
Args:
input: A tensor of shape [N, 1, *]
num_classes: An int of number of class
Returns:
A tensor of shape [N, num_classes, *]
"""
shape = np.array(input.shape)
shape[1] = num_classes
shape = tuple(shape)
result = torch.zeros(shape).scatter_(1, input.cpu().long(), 1)
# result = result.scatter_(1, input.cpu(), 1)
return result
def test_it(model, data, device="cuda"):
model.eval()
imgs, gts = data[:2]
gts_df = data[2]
imgs = imgs.to(device)
gts = gts.to(device)
net_out = model(imgs)
if len(net_out) > 1:
preds_out = net_out[0]
preds_df = net_out[1]
else:
preds_out = net_out[0]
preds_df = None
preds_out = nn.functional.softmax(preds_out, dim=1)
_, preds = torch.max(preds_out, 1)
preds = preds.unsqueeze(1) # (N, 1, *)
return preds, preds_df
def vis_it(pred, gt, img=None, filename=None, infos=None):
h, w = pred.shape
# gt_contours = masks_to_contours(gt)
# mask = np.hstack([pred, np.zeros((h, 1)), gt])
# gt_contours = np.hstack([gt_contours, np.zeros((h, 1)), np.zeros_like(gt)])
# im_rgb = mask2png(mask).astype(np.int16)
# im_rgb[:, w, :] = [255, 255, 255]
# im_rgb = apply_mask(im_rgb, gt_contours, [255, 255, 255], 0.8)
pred_im = mask2png(pred).astype(np.int16)
gt_im = mask2png(gt).astype(np.int16)
img = (img - img.min()) / (img.max() - img.min()) * 255
img = np.stack([img, img, img], axis=2)
# img = img_mask_png(img, gt, alpha=0.1)
# im_rgb = np.hstack([im_rgb, 255*np.ones((h, 1, 3)), img])
# cv2.putText(im_rgb, "prediction", (2,h-4),
# fontFace=cv2.FONT_HERSHEY_SIMPLEX, fontScale=0.4, color=(255, 255, 255), thickness=1)
# cv2.putText(im_rgb, "ground truth", (w, h-4),
# fontFace=cv2.FONT_HERSHEY_SIMPLEX, fontScale=0.4, color=(255, 255, 255), thickness=1)
# st_pos = 15
# if infos is not None:
# for info in infos:
# cv2.putText(im_rgb, info+": {}".format(infos[info]), (2, st_pos),
# fontFace=cv2.FONT_HERSHEY_SIMPLEX, fontScale=0.4, color=(255, 255, 255), thickness=1)
# st_pos += 10
cv2.imwrite(filename+"_img.png", img[:,:,::-1])
cv2.imwrite(filename+"_pred.png", pred_im[:,:,::-1])
cv2.imwrite(filename+"_gt.png", gt_im[:,:,::-1])
def vis_df(pred_df, gt_df, filename, infos=None):
_, h, w = pred_df.shape
# save .npy files
np.save(filename+'.npy', [pred_df, gt_df])
theta = np.arctan2(gt_df[1,...], gt_df[0,...])
degree_gt = (theta - theta.min()) / (theta.max() - theta.min()) * 255
# degree_gt = theta * 360
mag_gt = np.sum(gt_df ** 2, axis=0, keepdims=False)
mag_gt = mag_gt / mag_gt.max() * 255
theta = np.arctan2(pred_df[1,...], pred_df[0,...])
degree_df = (theta - theta.min()) / (theta.max() - theta.min()) * 255
# degree_df = theta * 360
magnitude = np.sum(pred_df ** 2, axis=0, keepdims=False)
magnitude = magnitude / magnitude.max() * 255
im = np.hstack([magnitude, np.zeros((h, 1)), mag_gt, np.zeros((h, 1)), degree_df, np.zeros((h, 1)), degree_gt]).astype(np.uint8)
im = cv2.applyColorMap(im, cv2.COLORMAP_JET)
cv2.imwrite(filename+"_df_pred_mag.png", im[:h, :w, ...])
cv2.imwrite(filename+"_df_gt_mag.png", im[:h, w+1:2*w+1, ...])
cv2.imwrite(filename+"_df_pred_degree.png", im[:h, 2*w+2:3*w+2, ...])
cv2.imwrite(filename+"_df_gt_degree.png", im[:h, 3*w+3:, ...])
def test():
root_result_dir = args.output_dir
os.makedirs(root_result_dir, exist_ok=True)
log_file = os.path.join(root_result_dir, args.log_file)
logger = create_logger(log_file)
for key, val in vars(args).items():
logger.info("{:16} {}".format(key, val))
# create dataset & dataloader & network
if args.used_df == 'U_NetDF':
model = U_NetDF(selfeat=args.selfeat, num_class=4, auxseg=True)
elif args.used_df == 'U_Net':
model = U_Net(num_class=4)
if args.mgpus is not None and len(args.mgpus) > 2:
model = nn.DataParallel(model)
model.cuda()
test_loader, test_set = create_dataloader()
checkpoint = torch.load(args.model_path1, map_location='cpu')
model.load_state_dict(checkpoint['model_state'])
dice_dict = {"LV_dice": [],
"RV_dice": [],
"MYO_dice": []}
for i, data in enumerate(test_loader):
if i != 23: continue
# i = 5405
# data = test_set[5405]
# data = [data[0][None], data[1][None], data[2][None]]
pred, pred_df = test_it(model, data[:3])
_, gt, gt_df = data[:3]
gt = gt.to("cuda")
L, R, MYO = cal_perfer(make_one_hot(pred, 4), make_one_hot(gt, 4), dice_dict)
data_info = test_set.data_infos[i]
if args.vis:
# if 0.7 <= (L + R + MYO) / 3 < 0.8:
vis_it(pred.cpu().numpy()[0, 0], gt.cpu().numpy()[0, 0], data[0].cpu().numpy()[0, 0],
filename=os.path.join(root_result_dir, str(i)))
if pred_df is not None:
vis_df(pred_df.detach().cpu().numpy()[0], gt_df.cpu().numpy()[0],
filename=os.path.join(root_result_dir, str(i)))
print("\r{}/{} {:.0%} {}".format(i, len(test_set), i/len(test_set),
np.mean(list(dice_dict.values()))), end="")
print()
logger.info("2D Dice Metirc:")
logger.info("Total {}".format(len(test_set)))
logger.info("LV_dice: {}".format(np.mean(dice_dict["LV_dice"])))
logger.info("RV_dice: {}".format(np.mean(dice_dict["RV_dice"])))
logger.info("MYO_dice: {}".format(np.mean(dice_dict["MYO_dice"])))
logger.info("Mean_dice: {}".format(np.mean(list(dice_dict.values()))))
if __name__ == "__main__":
test()