[98e649]: / tools / test_acdc_leadboard.py

Download this file

254 lines (204 with data), 9.6 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
import os
import sys
import numpy as np
import nibabel as nib
import time
import torch
import torch.nn as nn
import torch.nn.functional as F
import _init_paths
from libs.network import U_Net, U_NetDF
from utils.image_list import to_image_list
import libs.datasets.augment as standard_augment
import libs.datasets.joint_augment as joint_augment
def progress_bar(curr_idx, max_idx, time_step, repeat_elem = "_"):
max_equals = 55
step_ms = int(time_step*1000)
num_equals = int(curr_idx*max_equals/float(max_idx))
len_reverse =len('Step:%d ms| %d/%d ['%(step_ms, curr_idx, max_idx)) + num_equals
sys.stdout.write("Step:%d ms|%d/%d [%s]" %(step_ms, curr_idx, max_idx, " " * max_equals,))
sys.stdout.flush()
sys.stdout.write("/b" * (max_equals+1))
sys.stdout.write(repeat_elem * num_equals)
sys.stdout.write("/b"*len_reverse)
sys.stdout.flush()
if curr_idx == max_idx:
print('/n')
def load_nii(img_path):
"""
Function to load a 'nii' or 'nii.gz' file, The function returns
everyting needed to save another 'nii' or 'nii.gz'
in the same dimensional space, i.e. the affine matrix and the header
Parameters
----------
img_path: string
String with the path of the 'nii' or 'nii.gz' image file name.
Returns
-------
Three element, the first is a numpy array of the image values,
the second is the affine transformation of the image, and the
last one is the header of the image.
"""
nimg = nib.load(img_path)
return nimg.get_fdata(), nimg.affine, nimg.header
def save_nii(vol, affine, hdr, path, prefix, suffix):
vol = nib.Nifti1Image(vol, affine, hdr)
vol.set_data_dtype(np.uint8)
nib.save(vol, os.path.join(path, prefix+'_'+suffix + ".nii.gz"))
def get_person_names(root_path=None):
persons_name = os.listdir(root_path)
persons_name = [pn for pn in persons_name if "patient" in pn]
persons_name.sort()
return persons_name
def get_patient_data(patient, root_path):
patient_data = {}
infocfg_p = os.path.join(root_path, patient, "Info.cfg")
with open(infocfg_p) as f_in:
for line in f_in:
l = line.rstrip().split(": ")
patient_data[l[0]] = l[1]
ed_path = os.path.join(root_path, patient, "%s_frame%02d.nii.gz" % (patient, int(patient_data['ED'])))
es_path = os.path.join(root_path, patient, "%s_frame%02d.nii.gz" % (patient, int(patient_data['ES'])))
img_4d_path = os.path.join(root_path, patient, "{}_4d.nii.gz".format(patient))
# ed_gt_path = os.path.join(root_path, patient, "%s_frame%02d_gt.nii.gz" % (patient, int(patient_data['ED'])))
# es_gt_path = os.path.join(root_path, patient, "%s_frame%02d_gt.nii.gz" % (patient, int(patient_data['ES'])))
ed, affine, hdr = load_nii(ed_path)
patient_data['ED_VOL'] = np.swapaxes(ed, 0, -1)
patient_data['3D_affine'] = affine
patient_data['3D_hdr'] = hdr
es, _, _ = load_nii(es_path) # (w, h, slices)
patient_data['ES_VOL'] = np.swapaxes(es, 0, -1)
img_4d, affine_4d, hdr_4d = load_nii(img_4d_path) # (w, h, slices, times)
patient_data['4D'] = np.swapaxes(img_4d, 0, 1)
patient_data['4D_affine'] = affine_4d
patient_data['4D_hdr'] = hdr_4d
patient_data['size'] = img_4d.shape[:2][::-1]
patient_data['pid'] = patient
# ed_gt = load_nii(ed_gt_path)
# patient_data['ED_GT'] = np.swapaxes(ed_gt, 0, 1)
# es_gt = load_nii(es_gt_path)
# patient_data['ES_GT'] = np.swapaxes(es_gt, 0, 1)
return patient_data
def test_it(model, data, device="cuda", used_df=True):
model.eval()
imgs = data
imgs = imgs.to(device)
# gts = gts.to(device)
net_out = model(imgs)
if used_df:
preds_out = net_out[0]
preds_df = net_out[1]
else:
preds_out = net_out[0]
preds_df = None
preds_out = nn.functional.softmax(preds_out, dim=1)
_, preds = torch.max(preds_out, 1)
preds = preds.unsqueeze(1) # (N, 1, *)
return preds, preds_df
def transform(imgs):
mean = 63.19523533061758
std = 70.74166957523165
trans = standard_augment.Compose([standard_augment.To_PIL_Image(),
# joint_augment.RandomAffine(0,translate=(0.125, 0.125)),
# joint_augment.RandomRotate((-180,180)),
# joint_augment.FixResize(224),
standard_augment.to_Tensor(),
standard_augment.normalize([mean], [std]),
])
return trans(imgs)
def test_voxel(model, imgs, used_df, multi_batches=False, resize=None):
""" imgs: (slices, H, W)
preds: (slices, 1, H, W)
"""
imgs = imgs[..., None].astype(np.float32)
B, _, _, C = imgs.shape
if multi_batches:
data, origin_shape = to_image_list(imgs, size_divisible=32, return_size=True)
preds, _ = test_it(model, data)
# for j in range(imgs.shape[0]):
# preds[j, ...] = pred.cpu().numpy()[j, :, :origin_shape[j][0], :origin_shape[j][1]]
else:
preds = torch.zeros(B, C, resize[0], resize[1])
for j, pt in enumerate(imgs):
data = [transform(pt)]
data, origin_shape = to_image_list(data, size_divisible=32, return_size=True)
pred, _ = test_it(model, data, used_df=used_df)
preds[j, ...] = pred[0, 0, :origin_shape[0][0], :origin_shape[0][1]]
if resize is not None:
# preds = F.interpolate(preds, size=resize, mode='nearest')
preds = preds[..., :resize[0], :resize[1]]
return preds.cpu().numpy()[:, 0, ...]
def create_model(model_name, selfeat):
if model_name == 'U_NetDF':
model = U_NetDF(selfeat=selfeat, auxseg=True)
elif model_name == 'U_Net':
model = U_Net()
# elif model_name == 'Resnet18_DfUnet':
# model = Resnet18_DfUnet()
# elif model_name == 'DenseNet':
# model = DenseNet()
# elif model_name == 'DenseNet_DF':
# model = DenseNet_DF(selfeat=selfeat)
return model
def test(mgpus, model_name, model_path, used_df, selfeat, log_path):
model = create_model(model_name, selfeat=selfeat)
if mgpus is not None and len(mgpus) > 2:
model = nn.DataParallel(model)
model.cuda()
checkpoint = torch.load(model_path, map_location='cpu')
model.load_state_dict(checkpoint['model_state'])
root_path = "MICCAIACDC2017/ACDC_DataSet/testing/testing/"
root_path = "/root/ACDC_DataSet/testing/testing/"
persons_name = get_person_names(root_path)
for j, pn in enumerate(persons_name):
s_time = time.time()
patient_data = get_patient_data(pn, root_path)
# (slices, h, w)
es_pred = test_voxel(model, patient_data['ES_VOL'], used_df=used_df, resize=patient_data['size'])
ed_pred = test_voxel(model, patient_data['ED_VOL'], used_df=used_df, resize=patient_data['size'])
es_pred = np.transpose(es_pred, (2, 1, 0))
ed_pred = np.transpose(ed_pred, (2, 1, 0))
img_4D = patient_data['4D']
h, w, s, t = img_4D.shape
pred_4D = np.zeros((w, h, s, t))
for i in range(img_4D.shape[-1]):
pred = test_voxel(model, np.transpose(img_4D[...,i], (2, 0, 1)), used_df=used_df, resize=patient_data['size'])
pred_4D[..., i] = np.transpose(pred, (2, 1, 0))
save_path = os.path.join(log_path, "all_predictions")
os.makedirs(save_path, exist_ok=True)
CheckSizeAndSaveVolume(pred_4D, patient_data, save_path)
progress_bar(j%(len(persons_name)+1), len(persons_name),time.time()-s_time)
def CheckSizeAndSaveVolume(seg_4D, patient_data, save_path):
"""
TODO:
"""
prefix = patient_data['pid']
suffix = '4D'
# save_nii(seg_4D, patient_data['4D_affine'], patient_data['4D_hdr'], save_path, prefix, suffix)
suffix = 'ED'
ED_phase_n = int(patient_data['ED'])
ED_pred = seg_4D[:,:,:,ED_phase_n]
save_nii(ED_pred.astype(np.uint8), patient_data['3D_affine'], patient_data['3D_hdr'], save_path, prefix, suffix)
suffix = 'ES'
ES_phase_n = int(patient_data['ES'])
ES_pred = seg_4D[:,:,:,ES_phase_n]
save_nii(ES_pred.astype(np.uint8), patient_data['3D_affine'], patient_data['3D_hdr'], save_path, prefix, suffix)
# ED_GT = patient_data.get('ED_GT', None)
results = []
return results
if __name__ == "__main__":
# get_person_names()
import argparse
parser = argparse.ArgumentParser(description="arg parser")
parser.add_argument('--mgpus', type=str, default='0', required=False, help='whether to use multiple gpu')
parser.add_argument('--used_df', type=str, default='True', help='whether to use df')
parser.add_argument('--model', type=str, default='', help='whether to use df')
parser.add_argument('--selfeat', type=bool, default=True, help='whether to use feature select')
parser.add_argument('--model_path', type=str, default=None, help='whether to train with evaluation')
parser.add_argument('--output_dir', type=str, default="logs/acdc_logs/logs_supcat_auxseg/predtions", required=False, help='specify an output directory if needed')
parser.add_argument('--log_file', type=str, default="../log_predtion.txt", help="the file to write logging")
args = parser.parse_args()
if args.mgpus is not None:
os.environ["CUDA_VISIBLE_DEVICES"] = args.mgpus
model_path = "logs/acdc_logs/logs_supcat_auxseg/ckpt/checkpoint_epoch_70.pth"
test(args.mgpus, "U_NetDF", model_path, args.used_df, args.selfeat, args.output_dir)