|
a |
|
b/utils/direct_field/df_cardia.py |
|
|
1 |
import numpy as np |
|
|
2 |
from scipy import ndimage |
|
|
3 |
import math |
|
|
4 |
import cv2 |
|
|
5 |
from PIL import Image |
|
|
6 |
|
|
|
7 |
def direct_field(a, norm=True): |
|
|
8 |
""" a: np.ndarray, (h, w) |
|
|
9 |
""" |
|
|
10 |
if a.ndim == 3: |
|
|
11 |
a = np.squeeze(a) |
|
|
12 |
|
|
|
13 |
h, w = a.shape |
|
|
14 |
|
|
|
15 |
a_Image = Image.fromarray(a) |
|
|
16 |
a = a_Image.resize((w, h), Image.NEAREST) |
|
|
17 |
a = np.array(a) |
|
|
18 |
|
|
|
19 |
accumulation = np.zeros((2, h, w), dtype=np.float32) |
|
|
20 |
for i in np.unique(a)[1:]: |
|
|
21 |
# b, ind = ndimage.distance_transform_edt(a==i, return_indices=True) |
|
|
22 |
# c = np.indices((h, w)) |
|
|
23 |
# diff = c - ind |
|
|
24 |
# dr = np.sqrt(np.sum(diff ** 2, axis=0)) |
|
|
25 |
|
|
|
26 |
img = (a == i).astype(np.uint8) |
|
|
27 |
dst, labels = cv2.distanceTransformWithLabels(img, cv2.DIST_L2, cv2.DIST_MASK_PRECISE, labelType=cv2.DIST_LABEL_PIXEL) |
|
|
28 |
index = np.copy(labels) |
|
|
29 |
index[img > 0] = 0 |
|
|
30 |
place = np.argwhere(index > 0) |
|
|
31 |
nearCord = place[labels-1,:] |
|
|
32 |
x = nearCord[:, :, 0] |
|
|
33 |
y = nearCord[:, :, 1] |
|
|
34 |
nearPixel = np.zeros((2, h, w)) |
|
|
35 |
nearPixel[0,:,:] = x |
|
|
36 |
nearPixel[1,:,:] = y |
|
|
37 |
grid = np.indices(img.shape) |
|
|
38 |
grid = grid.astype(float) |
|
|
39 |
diff = grid - nearPixel |
|
|
40 |
if norm: |
|
|
41 |
dr = np.sqrt(np.sum(diff**2, axis = 0)) |
|
|
42 |
else: |
|
|
43 |
dr = np.ones_like(img) |
|
|
44 |
|
|
|
45 |
# direction = np.zeros((2, h, w), dtype=np.float32) |
|
|
46 |
# direction[0, b>0] = np.divide(diff[0, b>0], dr[b>0]) |
|
|
47 |
# direction[1, b>0] = np.divide(diff[1, b>0], dr[b>0]) |
|
|
48 |
|
|
|
49 |
direction = np.zeros((2, h, w), dtype=np.float32) |
|
|
50 |
direction[0, img>0] = np.divide(diff[0, img>0], dr[img>0]) |
|
|
51 |
direction[1, img>0] = np.divide(diff[1, img>0], dr[img>0]) |
|
|
52 |
|
|
|
53 |
accumulation[:, img>0] = 0 |
|
|
54 |
accumulation = accumulation + direction |
|
|
55 |
|
|
|
56 |
# mag, angle = cv2.cartToPolar(accumulation[0, ...], accumulation[1, ...]) |
|
|
57 |
# for l in np.unique(a)[1:]: |
|
|
58 |
# mag_i = mag[a==l].astype(float) |
|
|
59 |
# t = 1 / mag_i * mag_i.max() |
|
|
60 |
# mag[a==l] = t |
|
|
61 |
# x, y = cv2.polarToCart(mag, angle) |
|
|
62 |
# accumulation = np.stack([x, y], axis=0) |
|
|
63 |
|
|
|
64 |
return accumulation |
|
|
65 |
|
|
|
66 |
|
|
|
67 |
if __name__ == "__main__": |
|
|
68 |
import matplotlib.pyplot as plt |
|
|
69 |
# gt_p = "/home/ffbian/chencheng/XieheCardiac/npydata/dianfen/16100000/gts/16100000_CINE_segmented_SAX_b3.npy" |
|
|
70 |
# gt = np.load(gt_p)[..., 9] # uint8 |
|
|
71 |
# print(gt.shape) |
|
|
72 |
|
|
|
73 |
# a_Image = Image.fromarray(gt) |
|
|
74 |
# a = a_Image.resize((224, 224), Image.NEAREST) |
|
|
75 |
# a = np.array(a) # uint8 |
|
|
76 |
# print(a.shape, np.unique(a)) |
|
|
77 |
|
|
|
78 |
# # plt.imshow(a) |
|
|
79 |
# # plt.show() |
|
|
80 |
|
|
|
81 |
# ############################################################ |
|
|
82 |
# direction = direct_field(gt) |
|
|
83 |
|
|
|
84 |
# theta = np.arctan2(direction[1,...], direction[0,...]) |
|
|
85 |
# degree = theta * 180 / math.pi |
|
|
86 |
# degree = (degree + 180) / 360 |
|
|
87 |
|
|
|
88 |
# plt.imshow(degree) |
|
|
89 |
# plt.show() |
|
|
90 |
|
|
|
91 |
######################################################## |
|
|
92 |
import json, time, pdb, h5py |
|
|
93 |
data_list = "/home/ffbian/chencheng/XieheCardiac/2DUNet/UNet/libs/datasets/train_new.json" |
|
|
94 |
data_list = "/root/chengfeng/Cardiac/source_code/libs/datasets/jsonLists/acdcList/Dense_TestList.json" |
|
|
95 |
with open(data_list, 'r') as f: |
|
|
96 |
data_infos = json.load(f) |
|
|
97 |
|
|
|
98 |
mag_stat = [] |
|
|
99 |
st = time.time() |
|
|
100 |
for i, di in enumerate(data_infos): |
|
|
101 |
# img_p, times_idx = di |
|
|
102 |
# gt_p = img_p.replace("/imgs/", "/gts/") |
|
|
103 |
# gt = np.load(gt_p)[..., times_idx] |
|
|
104 |
|
|
|
105 |
img = h5py.File(di,'r')['image'] |
|
|
106 |
gt = h5py.File(di,'r')['label'] |
|
|
107 |
gt = np.array(gt).astype(np.float32) |
|
|
108 |
|
|
|
109 |
print(gt.shape) |
|
|
110 |
direction = direct_field(gt, False) |
|
|
111 |
# theta = np.arctan2(direction[1,...], direction[0,...]) |
|
|
112 |
mag, angle = cv2.cartToPolar(direction[0, ...], direction[1, ...]) |
|
|
113 |
# degree = theta * 180 / math.pi |
|
|
114 |
# degree = (degree + 180) / 360 |
|
|
115 |
degree = angle / (2 * math.pi) * 255 |
|
|
116 |
# degree = (theta - theta.min()) / (theta.max() - theta.min()) * 255 |
|
|
117 |
# mag = np.sqrt(np.sum(direction ** 2, axis=0, keepdims=False)) |
|
|
118 |
|
|
|
119 |
|
|
|
120 |
# 归一化 |
|
|
121 |
# for l in np.unique(gt)[1:]: |
|
|
122 |
# mag_i = mag[gt==l].astype(float) |
|
|
123 |
# # mag[gt==l] = 1. - mag[gt==l] / np.max(mag[gt==l]) |
|
|
124 |
# t = (mag_i - mag_i.min()) / (mag_i.max() - mag_i.min()) |
|
|
125 |
# mag[gt==l] = np.exp(-10*t) |
|
|
126 |
# print(mag_i.max(), mag_i.min()) |
|
|
127 |
|
|
|
128 |
# for l in np.unique(gt)[1:]: |
|
|
129 |
# mag_i = mag[gt==l].astype(float) |
|
|
130 |
# t = 1 / (mag_i) * mag_i.max() |
|
|
131 |
# # t = np.exp(-0.8*mag_i) * mag_i.max() |
|
|
132 |
# # t = 1 / np.sqrt(mag_i+1) * mag_i.max() |
|
|
133 |
# mag[gt==l] = t |
|
|
134 |
# # print(mag_i.max(), mag_i.min()) |
|
|
135 |
|
|
|
136 |
# mag[mag>0] = 2 * np.exp(-0.8*(mag[mag>0]-1)) |
|
|
137 |
# mag[mag>0] = 2 * np.exp(0.8*(mag[mag>0]-1)) |
|
|
138 |
|
|
|
139 |
|
|
|
140 |
mag_stat.append(mag.max()) |
|
|
141 |
# pdb.set_trace() |
|
|
142 |
|
|
|
143 |
# plt.imshow(degree) |
|
|
144 |
# plt.show() |
|
|
145 |
|
|
|
146 |
###################### |
|
|
147 |
fig, axs = plt.subplots(1, 3) |
|
|
148 |
axs[0].imshow(degree) |
|
|
149 |
axs[1].imshow(gt) |
|
|
150 |
axs[2].imshow(mag) |
|
|
151 |
plt.show() |
|
|
152 |
|
|
|
153 |
###################### |
|
|
154 |
if i % 100 == 0: |
|
|
155 |
print("\r\r{}/{} {:.4}s".format(i+1, len(data_infos), time.time()-st)) |
|
|
156 |
print() |
|
|
157 |
|
|
|
158 |
print("total time: ", time.time()-st) |
|
|
159 |
print("Average time: ", (time.time()-st) / len(data_infos)) |
|
|
160 |
# total time: 865.811030626297 |
|
|
161 |
# Average time: 0.012969593759126428 |
|
|
162 |
|
|
|
163 |
plt.hist(mag_stat) |
|
|
164 |
plt.show() |
|
|
165 |
print(mag_stat) |