|
a |
|
b/utils/dice3D.py |
|
|
1 |
""" |
|
|
2 |
author: Clément Zotti (clement.zotti@usherbrooke.ca) |
|
|
3 |
date: April 2017 |
|
|
4 |
|
|
|
5 |
DESCRIPTION : |
|
|
6 |
The script provide helpers functions to handle nifti image format: |
|
|
7 |
- load_nii() |
|
|
8 |
- save_nii() |
|
|
9 |
|
|
|
10 |
to generate metrics for two images: |
|
|
11 |
- metrics() |
|
|
12 |
|
|
|
13 |
And it is callable from the command line (see below). |
|
|
14 |
Each function provided in this script has comments to understand |
|
|
15 |
how they works. |
|
|
16 |
|
|
|
17 |
HOW-TO: |
|
|
18 |
|
|
|
19 |
This script was tested for python 3.4. |
|
|
20 |
|
|
|
21 |
First, you need to install the required packages with |
|
|
22 |
pip install -r requirements.txt |
|
|
23 |
|
|
|
24 |
After the installation, you have two ways of running this script: |
|
|
25 |
1) python metrics.py ground_truth/patient001_ED.nii.gz prediction/patient001_ED.nii.gz |
|
|
26 |
2) python metrics.py ground_truth/ prediction/ |
|
|
27 |
|
|
|
28 |
The first option will print in the console the dice and volume of each class for the given image. |
|
|
29 |
The second option wiil ouput a csv file where each images will have the dice and volume of each class. |
|
|
30 |
|
|
|
31 |
|
|
|
32 |
Link: http://acdc.creatis.insa-lyon.fr |
|
|
33 |
|
|
|
34 |
""" |
|
|
35 |
|
|
|
36 |
import os |
|
|
37 |
from glob import glob |
|
|
38 |
import time |
|
|
39 |
import re |
|
|
40 |
import argparse |
|
|
41 |
import nibabel as nib |
|
|
42 |
# import pandas as pd |
|
|
43 |
from medpy.metric.binary import hd, dc |
|
|
44 |
import numpy as np |
|
|
45 |
|
|
|
46 |
|
|
|
47 |
|
|
|
48 |
HEADER = ["Name", "Dice LV", "Volume LV", "Err LV(ml)", |
|
|
49 |
"Dice RV", "Volume RV", "Err RV(ml)", |
|
|
50 |
"Dice MYO", "Volume MYO", "Err MYO(ml)"] |
|
|
51 |
|
|
|
52 |
# |
|
|
53 |
# Utils functions used to sort strings into a natural order |
|
|
54 |
# |
|
|
55 |
def conv_int(i): |
|
|
56 |
return int(i) if i.isdigit() else i |
|
|
57 |
|
|
|
58 |
|
|
|
59 |
def natural_order(sord): |
|
|
60 |
""" |
|
|
61 |
Sort a (list,tuple) of strings into natural order. |
|
|
62 |
|
|
|
63 |
Ex: |
|
|
64 |
|
|
|
65 |
['1','10','2'] -> ['1','2','10'] |
|
|
66 |
|
|
|
67 |
['abc1def','ab10d','b2c','ab1d'] -> ['ab1d','ab10d', 'abc1def', 'b2c'] |
|
|
68 |
|
|
|
69 |
""" |
|
|
70 |
if isinstance(sord, tuple): |
|
|
71 |
sord = sord[0] |
|
|
72 |
return [conv_int(c) for c in re.split(r'(\d+)', sord)] |
|
|
73 |
|
|
|
74 |
|
|
|
75 |
# |
|
|
76 |
# Utils function to load and save nifti files with the nibabel package |
|
|
77 |
# |
|
|
78 |
def load_nii(img_path): |
|
|
79 |
""" |
|
|
80 |
Function to load a 'nii' or 'nii.gz' file, The function returns |
|
|
81 |
everyting needed to save another 'nii' or 'nii.gz' |
|
|
82 |
in the same dimensional space, i.e. the affine matrix and the header |
|
|
83 |
|
|
|
84 |
Parameters |
|
|
85 |
---------- |
|
|
86 |
|
|
|
87 |
img_path: string |
|
|
88 |
String with the path of the 'nii' or 'nii.gz' image file name. |
|
|
89 |
|
|
|
90 |
Returns |
|
|
91 |
------- |
|
|
92 |
Three element, the first is a numpy array of the image values, |
|
|
93 |
the second is the affine transformation of the image, and the |
|
|
94 |
last one is the header of the image. |
|
|
95 |
""" |
|
|
96 |
nimg = nib.load(img_path) |
|
|
97 |
return nimg.get_data(), nimg.affine, nimg.header |
|
|
98 |
|
|
|
99 |
|
|
|
100 |
def save_nii(img_path, data, affine, header): |
|
|
101 |
""" |
|
|
102 |
Function to save a 'nii' or 'nii.gz' file. |
|
|
103 |
|
|
|
104 |
Parameters |
|
|
105 |
---------- |
|
|
106 |
|
|
|
107 |
img_path: string |
|
|
108 |
Path to save the image should be ending with '.nii' or '.nii.gz'. |
|
|
109 |
|
|
|
110 |
data: np.array |
|
|
111 |
Numpy array of the image data. |
|
|
112 |
|
|
|
113 |
affine: list of list or np.array |
|
|
114 |
The affine transformation to save with the image. |
|
|
115 |
|
|
|
116 |
header: nib.Nifti1Header |
|
|
117 |
The header that define everything about the data |
|
|
118 |
(pleasecheck nibabel documentation). |
|
|
119 |
""" |
|
|
120 |
nimg = nib.Nifti1Image(data, affine=affine, header=header) |
|
|
121 |
nimg.to_filename(img_path) |
|
|
122 |
|
|
|
123 |
|
|
|
124 |
# |
|
|
125 |
# Functions to process files, directories and metrics |
|
|
126 |
# |
|
|
127 |
def metrics(img_gt, img_pred, voxel_size): |
|
|
128 |
""" |
|
|
129 |
Function to compute the metrics between two segmentation maps given as input. |
|
|
130 |
|
|
|
131 |
Parameters |
|
|
132 |
---------- |
|
|
133 |
img_gt: np.array |
|
|
134 |
Array of the ground truth segmentation map. |
|
|
135 |
|
|
|
136 |
img_pred: np.array |
|
|
137 |
Array of the predicted segmentation map. |
|
|
138 |
|
|
|
139 |
voxel_size: list, tuple or np.array |
|
|
140 |
The size of a voxel of the images used to compute the volumes. |
|
|
141 |
|
|
|
142 |
Return |
|
|
143 |
------ |
|
|
144 |
A list of metrics in this order, [Dice LV, Volume LV, Err LV(ml), |
|
|
145 |
Dice RV, Volume RV, Err RV(ml), Dice MYO, Volume MYO, Err MYO(ml)] |
|
|
146 |
""" |
|
|
147 |
|
|
|
148 |
if img_gt.ndim != img_pred.ndim: |
|
|
149 |
raise ValueError("The arrays 'img_gt' and 'img_pred' should have the " |
|
|
150 |
"same dimension, {} against {}".format(img_gt.ndim, |
|
|
151 |
img_pred.ndim)) |
|
|
152 |
|
|
|
153 |
res = [] |
|
|
154 |
# Loop on each classes of the input images |
|
|
155 |
for c in [3, 1, 2]: |
|
|
156 |
# Copy the gt image to not alterate the input |
|
|
157 |
gt_c_i = np.copy(img_gt) |
|
|
158 |
gt_c_i[gt_c_i != c] = 0 |
|
|
159 |
|
|
|
160 |
# Copy the pred image to not alterate the input |
|
|
161 |
pred_c_i = np.copy(img_pred) |
|
|
162 |
pred_c_i[pred_c_i != c] = 0 |
|
|
163 |
|
|
|
164 |
# Clip the value to compute the volumes |
|
|
165 |
gt_c_i = np.clip(gt_c_i, 0, 1) |
|
|
166 |
pred_c_i = np.clip(pred_c_i, 0, 1) |
|
|
167 |
|
|
|
168 |
# Compute the Dice |
|
|
169 |
dice = dc(gt_c_i, pred_c_i) |
|
|
170 |
|
|
|
171 |
# Compute volume |
|
|
172 |
volpred = pred_c_i.sum() * np.prod(voxel_size) / 1000. |
|
|
173 |
volgt = gt_c_i.sum() * np.prod(voxel_size) / 1000. |
|
|
174 |
|
|
|
175 |
# res += [dice, volpred, volpred-volgt] |
|
|
176 |
res += [dice] |
|
|
177 |
|
|
|
178 |
return res |
|
|
179 |
|
|
|
180 |
|
|
|
181 |
def compute_metrics_on_files(path_gt, path_pred): |
|
|
182 |
""" |
|
|
183 |
Function to give the metrics for two files |
|
|
184 |
|
|
|
185 |
Parameters |
|
|
186 |
---------- |
|
|
187 |
|
|
|
188 |
path_gt: string |
|
|
189 |
Path of the ground truth image. |
|
|
190 |
|
|
|
191 |
path_pred: string |
|
|
192 |
Path of the predicted image. |
|
|
193 |
""" |
|
|
194 |
gt, _, header = load_nii(path_gt) |
|
|
195 |
pred, _, _ = load_nii(path_pred) |
|
|
196 |
zooms = header.get_zooms() |
|
|
197 |
|
|
|
198 |
name = os.path.basename(path_gt) |
|
|
199 |
name = name.split('.')[0] |
|
|
200 |
res = metrics(gt, pred, zooms) |
|
|
201 |
res = ["{:.3f}".format(r) for r in res] |
|
|
202 |
|
|
|
203 |
formatting = "{:>14}, {:>7}, {:>9}, {:>10}, {:>7}, {:>9}, {:>10}, {:>8}, {:>10}, {:>11}" |
|
|
204 |
print(formatting.format(*HEADER)) |
|
|
205 |
print(formatting.format(name, *res)) |
|
|
206 |
|
|
|
207 |
|
|
|
208 |
def compute_metrics_on_directories(dir_gt, dir_pred): |
|
|
209 |
""" |
|
|
210 |
Function to generate a csv file for each images of two directories. |
|
|
211 |
|
|
|
212 |
Parameters |
|
|
213 |
---------- |
|
|
214 |
|
|
|
215 |
path_gt: string |
|
|
216 |
Directory of the ground truth segmentation maps. |
|
|
217 |
|
|
|
218 |
path_pred: string |
|
|
219 |
Directory of the predicted segmentation maps. |
|
|
220 |
""" |
|
|
221 |
lst_gt = sorted(glob(os.path.join(dir_gt, '*')), key=natural_order) |
|
|
222 |
lst_pred = sorted(glob(os.path.join(dir_pred, '*')), key=natural_order) |
|
|
223 |
|
|
|
224 |
res = [] |
|
|
225 |
for p_gt, p_pred in zip(lst_gt, lst_pred): |
|
|
226 |
if os.path.basename(p_gt) != os.path.basename(p_pred): |
|
|
227 |
raise ValueError("The two files don't have the same name" |
|
|
228 |
" {}, {}.".format(os.path.basename(p_gt), |
|
|
229 |
os.path.basename(p_pred))) |
|
|
230 |
|
|
|
231 |
gt, _, header = load_nii(p_gt) |
|
|
232 |
pred, _, _ = load_nii(p_pred) |
|
|
233 |
zooms = header.get_zooms() |
|
|
234 |
res.append(metrics(gt, pred, zooms)) |
|
|
235 |
|
|
|
236 |
lst_name_gt = [os.path.basename(gt).split(".")[0] for gt in lst_gt] |
|
|
237 |
res = [[n,] + r for r, n in zip(res, lst_name_gt)] |
|
|
238 |
df = pd.DataFrame(res, columns=HEADER) |
|
|
239 |
df.to_csv("results_{}.csv".format(time.strftime("%Y%m%d_%H%M%S")), index=False) |
|
|
240 |
|
|
|
241 |
def main(path_gt, path_pred): |
|
|
242 |
""" |
|
|
243 |
Main function to select which method to apply on the input parameters. |
|
|
244 |
""" |
|
|
245 |
if os.path.isfile(path_gt) and os.path.isfile(path_pred): |
|
|
246 |
compute_metrics_on_files(path_gt, path_pred) |
|
|
247 |
elif os.path.isdir(path_gt) and os.path.isdir(path_pred): |
|
|
248 |
compute_metrics_on_directories(path_gt, path_pred) |
|
|
249 |
else: |
|
|
250 |
raise ValueError( |
|
|
251 |
"The paths given needs to be two directories or two files.") |
|
|
252 |
|
|
|
253 |
|
|
|
254 |
if __name__ == "__main__": |
|
|
255 |
# parser = argparse.ArgumentParser( |
|
|
256 |
# description="Script to compute ACDC challenge metrics.") |
|
|
257 |
# parser.add_argument("GT_IMG", type=str, help="Ground Truth image") |
|
|
258 |
# parser.add_argument("PRED_IMG", type=str, help="Predicted image") |
|
|
259 |
# args = parser.parse_args() |
|
|
260 |
# main(args.GT_IMG, args.PRED_IMG) |
|
|
261 |
|
|
|
262 |
############################################################## |
|
|
263 |
gt = np.random.randint(0, 4, size=(224, 224, 100)) |
|
|
264 |
print(np.unique(gt)) |
|
|
265 |
pred = np.array(gt) |
|
|
266 |
pred[pred==2] = 3 |
|
|
267 |
result = metrics(gt, pred, voxel_size=(224, 224, 100)) |
|
|
268 |
print(result) |