[98e649]: / tools / train_utils / train_utils.py

Download this file

254 lines (209 with data), 11.1 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
import os
import torch
import torch.nn as nn
import torch.distributed as dist
import numpy as np
import json
from utils.comm import get_world_size, get_rank
import utils.metrics as metrics
from utils.image_list import to_image_list
from tools.test_utils import personTo4Ddata, test_person
from libs.datasets import joint_augment as joint_augment
from libs.datasets import augment as standard_augment
def save_checkpoint(state, filename='checkpoint', is_best=False):
filename = '{}.pth'.format(filename)
torch.save(state, filename)
if is_best:
torch.save(state, os.path.join(os.path.dirname(filename), "model_best.pth"))
def checkpoint_state(model=None, optimizer=None, epoch=None, it=None, performance=0.):
optim_state = optimizer.state_dict() if optimizer is not None else None
if model is not None:
if isinstance(model, (torch.nn.DataParallel, torch.nn.parallel.DistributedDataParallel)):
model_state = model.module.state_dict()
else:
model_state = model.state_dict()
else:
model_state = None
return {'epoch': epoch, 'it': it, 'model_state': model_state, 'optimizer_state': optim_state, 'performance': performance}
def load_checkpoint(model=None, optimizer=None, filename="checkpoint", logger=None):
if os.path.isfile(filename):
if logger is not None:
logger.info("==> Loading from checkpoint '{}'".format(filename))
checkpoint = torch.load(filename, map_location="cpu")
epoch = checkpoint['epoch'] if 'epoch' in checkpoint.keys() else -1
it = checkpoint.get('it', 0.0)
performance = checkpoint.get('performance', 0.)
if model is not None and checkpoint['model_state'] is not None:
model.load_state_dict(checkpoint['model_state'])
if optimizer is not None and checkpoint['optimizer_state'] is not None:
optimizer.load_state_dict(checkpoint['optimizer_state'])
if logger is not None:
logger.info("==> Done")
else:
raise FileNotFoundError
return it, epoch, performance
class Trainer():
def __init__(self, model, model_fn, criterion, optimizer, ckpt_dir, lr_scheduler, model_fn_eval,
tb_log, logger, eval_frequency=1, grad_norm_clip=1.0, cfg=None):
self.model, self.model_fn, self.optimizer, self.model_fn_eval = model, model_fn, optimizer, model_fn_eval
self.criterion = criterion
self.lr_scheduler = lr_scheduler
self.ckpt_dir = ckpt_dir
self.tb_log = tb_log
self.logger = logger
self.eval_frequency = eval_frequency
self.grad_norm_clip = grad_norm_clip
self.cfg = cfg
self.caches_4D = {}
def _train_it(self, batch, epoch=0):
self.model.train()
self.optimizer.zero_grad()
loss, tb_dict, disp_dict = self.model_fn(self.model, batch, self.criterion, perfermance=False, epoch=0)
loss.backward(retain_graph=True)
self.optimizer.step()
return loss.item(), tb_dict, disp_dict
def eval_epoch(self, d_loader):
self.model.eval()
eval_dict = {}
total_loss = 0
# eval one epoch
if get_rank() == 0: print("evaluating...")
sel_num = np.random.choice(len(d_loader), size=1)
for i, data in enumerate(d_loader, 0):
self.optimizer.zero_grad()
vis = True if i == sel_num else False
loss, tb_dict, disp_dict = self.model_fn_eval(self.model, data, self.criterion, perfermance=True, vis=vis)
total_loss += loss.item()
for k, v in tb_dict.items():
if "vis" not in k:
eval_dict[k] = eval_dict.get(k, 0) + v
else:
eval_dict[k] = v
if get_rank() == 0: print("\r{}/{} {:.0%}\r".format(i, len(d_loader), i/len(d_loader)), end='')
if get_rank() == 0: print()
for k, v in tb_dict.items():
if "vis" not in k:
eval_dict[k] = eval_dict.get(k, 0) / (i + 1)
return total_loss / (i+1), eval_dict, disp_dict
def train(self, start_it, start_epoch, n_epochs, train_loader, test_loader=None,
ckpt_save_interval=5, lr_scheduler_each_iter=False, best_res=0):
eval_frequency = self.eval_frequency if self.eval_frequency else 1
it = start_it
for epoch in range(start_epoch, n_epochs):
if self.lr_scheduler is not None:
self.lr_scheduler.step(epoch)
for cur_it, batch in enumerate(train_loader):
cur_lr = self.lr_scheduler.get_lr()[0]
loss, tb_dict, disp_dict = self._train_it(batch, epoch)
it += 1
# print infos
if get_rank() == 0:
print("Epoch/train:{}({:.0%})/{}({:.0%})".format(epoch, epoch/n_epochs,
cur_it, cur_it/len(train_loader)), end="")
for k, v in disp_dict.items():
print(", ", k+": {:.6}".format(v), end="")
print("")
# tensorboard logs
if self.tb_log is not None:
self.tb_log.add_scalar("train_loss", loss, it)
self.tb_log.add_scalar("learning_rate", cur_lr, it)
for key, val in tb_dict.items():
self.tb_log.add_scalar('train_'+key, val, it)
# save trained model
trained_epoch = epoch
# if trained_epoch % ckpt_save_interval == 0:
# ckpt_name = os.path.join(self.ckpt_dir, "checkpoint_epoch_%d" % trained_epoch)
# save_checkpoint(checkpoint_state(self.model, self.optimizer, trained_epoch, it),
# filename=ckpt_name)
# eval one epoch
if (epoch % eval_frequency) == 0 and (test_loader is not None):
with torch.set_grad_enabled(False):
val_loss, eval_dict, disp_dict = self.eval_epoch(test_loader)
# mean_3D = self.metric_3D(self.model, self.cfg)
if self.tb_log is not None:
for key, val in eval_dict.items():
if "vis" not in key:
self.tb_log.add_scalar("val_"+key, val, it)
else:
self.tb_log.add_images("df_gt", val[0], it, dataformats="NCHW")
self.tb_log.add_images("df_pred", val[2], it, dataformats="NCHW")
self.tb_log.add_images("df_magnitude", val[1], it, dataformats="NCHW")
# save model and best model
if get_rank() == 0:
# cal 3D dice
# if self.tb_log is not None:
# for k, v in mean_3D.items():
# self.tb_log.add_scalar("val_3D_"+k, v, it)
res = np.mean([eval_dict["LV_dice"], eval_dict["RV_dice"], eval_dict["MYO_dice"]])
# res = np.mean([mean_3D["LV_dice"], mean_3D["RV_dice"], mean_3D["MYO_dice"]])
self.logger.info("Epoch {} mean dice(2D/3D): {}/N".format(epoch, res))
if best_res != 0:
_, _, best_res = load_checkpoint(filename=os.path.join(self.ckpt_dir, "model_best.pth"))
is_best = res > best_res
best_res = max(res, best_res)
ckpt_name = os.path.join(self.ckpt_dir, "checkpoint_epoch_%d" % trained_epoch)
save_checkpoint(checkpoint_state(self.model, self.optimizer, trained_epoch, it, performance=res),
filename=ckpt_name, is_best=is_best)
def metric_3D(self, model, cfg):
p_json = cfg.DATASET.TEST_PERSON_LIST
datadir_4D = "/root/ACDC_DataSet/4dData"
with open(p_json, "r") as f:
persons = json.load(f)
total_segMetrics = {"dice": [[], [], []],
"hausdorff": [[], [], []]}
for i, p in enumerate(persons):
# imgs, gts = personTo4Ddata(p, val_list)
if p in self.caches_4D.keys():
imgs, gts = self.caches_4D[p]
else:
imgs = np.load(os.path.join(datadir_4D, p.split('-')[1], '4d_data.npy'))
gts = np.load(os.path.join(datadir_4D, p.split('-')[1], '4d_gt.npy'))
self.caches_4D[p] = [imgs, gts]
imgs, gts = imgs.astype(np.float32)[..., None, :], gts.astype(np.float32)[..., None,:]
imgs, gts = joint_transform(imgs, gts, cfg)
gts = [gt[:, 0, ...].numpy() for gt in gts]
preds = test_person(model, imgs, multi_batches=True, used_df=cfg.DATASET.DF_USED) # (times, slices, H, W)
segMetrics = {"dice": [], "hausdorff": []}
for j in range(len(preds)):
segMetrics["dice"].append(metrics.dice3D(preds[j], gts[j], gts[j].shape))
segMetrics["hausdorff"].append(metrics.hd_3D(preds[j], gts[j]))
for k, v in segMetrics.items():
segMetrics[k] = np.array(v).reshape((-1, 3))
for k, v in total_segMetrics.items():
for j in range(3):
total_segMetrics[k][j] += segMetrics[k][:, j].tolist()
# person i is done
if get_rank() == 0: print("\r{}/{} {:.0%}\r".format(i, len(persons), i/len(persons)), end='')
if get_rank() == 0: print()
mean = {}
for k, v in total_segMetrics.items():
mean.update({"LV_"+k: np.mean(v[1])})
mean.update({"MYO_"+k: np.mean(v[2])})
mean.update({"RV_"+k: np.mean(v[0])})
return mean
def transform(imgs, cfg):
trans = standard_augment.Compose([standard_augment.normalize([cfg.DATASET.MEAN], [cfg.DATASET.STD]),
])
return trans(imgs)
def joint_transform(imgs, gts, cfg):
trans = joint_augment.Compose([joint_augment.To_PIL_Image(),
# joint_augment.RandomAffine(0,translate=(0.125, 0.125)),
# joint_augment.RandomRotate((-180,180)),
joint_augment.FixResize(256),
joint_augment.To_Tensor()
])
S, H, W, C, T = gts.shape
trans_imgs = [None] * T
trans_gts = [None] * T
for i in range(T):
trans_imgs[i], trans_gts[i] = [], []
for j in range(S):
t0, t1 = trans(imgs[j,...,i], gts[j,...,i])
trans_imgs[i].append(transform(t0, cfg))
trans_gts[i].append(t1)
aligned_imgs = []
aligned_gts = []
for i in range(T):
aligned_imgs.append(to_image_list(trans_imgs[i], size_divisible=32))
aligned_gts.append(to_image_list(trans_gts[i], size_divisible=32))
return aligned_imgs, aligned_gts