a b/README.md
1
# DirectionalFeature
2
3
This repository contains the code of the following paper "**Learning Directional Feature Maps for Cardiac MRI Segmentation (published in MICCAI2020)**", https://arxiv.org/abs/2007.11349
4
5
![](./pipeline.png)
6
## Citation
7
8
Please cite the related works in your publications if it helps your research:
9
10
```
11
@inproceedings{cheng2020learning,
12
  title={Learning directional feature maps for cardiac mri segmentation},
13
  author={Cheng, Feng and Chen, Cheng and Wang, Yukang and Shi, Heshui and Cao, Yukun and Tu, Dandan and Zhang, Changzheng and Xu, Yongchao},
14
  booktitle={International Conference on Medical Image Computing and Computer-Assisted Intervention},
15
  pages={108--117},
16
  year={2020},
17
  organization={Springer}
18
}
19
20
```
21
## Usage
22
23
### ACDC Data Preparation
24
1. Register and download ACDC-2017 dataset from https://www.creatis.insa-lyon.fr/Challenge/acdc/index.html
25
2. Create a folder outside the project with name **ACDC_DataSet** and copy the dataset.
26
3. From the project folder open file acdc_data_preparation.py.
27
4. In the file, set the path to ACDC training dataset is pointed as: ```complete_data_path = '../../ACDC_DataSet/training' ```.
28
5. Run the script acdc_data_preparation.py.
29
6. The processed data for training is generated outside the project folder named *processed_acdc_dataset*.
30
7. Run the ./libs/datastes/gen_acdcjson.py to generate the data list for ACDC training and validation.
31
32
### Training
33
```
34
cd ./tools
35
python -m torch.distributed.launch --nproc_per_node 4 --master_port $RANDOM train.py --batch_size 12 --mgpus 0,1,2,3 --output_dir logs/... --train_with_eval
36
```