a b/densenet.py
1
import torch
2
import torch.nn as nn
3
import torch.nn.functional as F
4
import torch.utils.model_zoo as model_zoo
5
from collections import OrderedDict
6
7
__all__ = ['DenseNet', 'densenet169']
8
9
10
model_urls = {
11
    'densenet169': 'https://download.pytorch.org/models/densenet169-b2777c0a.pth',
12
}
13
14
def densenet169(pretrained=False, **kwargs):
15
    r"""Densenet-169 model from
16
    `"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`_
17
18
    Args:
19
        pretrained (bool): If True, returns a model pre-trained on ImageNet
20
    """
21
    model = DenseNet(num_init_features=64, growth_rate=32, block_config=(6, 12, 32, 32),
22
                     **kwargs)
23
    if pretrained:
24
        model.load_state_dict(model_zoo.load_url(model_urls['densenet169']), strict=False)
25
    return model
26
27
class _DenseLayer(nn.Sequential):
28
    def __init__(self, num_input_features, growth_rate, bn_size, drop_rate):
29
        super(_DenseLayer, self).__init__()
30
        self.add_module('norm1', nn.BatchNorm2d(num_input_features)),
31
        self.add_module('relu1', nn.ReLU(inplace=True)),
32
        self.add_module('conv1', nn.Conv2d(num_input_features, bn_size *
33
                        growth_rate, kernel_size=1, stride=1, bias=False)),
34
        self.add_module('norm2', nn.BatchNorm2d(bn_size * growth_rate)),
35
        self.add_module('relu2', nn.ReLU(inplace=True)),
36
        self.add_module('conv2', nn.Conv2d(bn_size * growth_rate, growth_rate,
37
                        kernel_size=3, stride=1, padding=1, bias=False)),
38
        self.drop_rate = drop_rate
39
40
    def forward(self, x):
41
        new_features = super(_DenseLayer, self).forward(x)
42
        if self.drop_rate > 0:
43
            new_features = F.dropout(new_features, p=self.drop_rate, training=self.training)
44
        return torch.cat([x, new_features], 1)
45
46
47
class _DenseBlock(nn.Sequential):
48
    def __init__(self, num_layers, num_input_features, bn_size, growth_rate, drop_rate):
49
        super(_DenseBlock, self).__init__()
50
        for i in range(num_layers):
51
            layer = _DenseLayer(num_input_features + i * growth_rate, growth_rate, bn_size, drop_rate)
52
            self.add_module('denselayer%d' % (i + 1), layer)
53
54
55
class _Transition(nn.Sequential):
56
    def __init__(self, num_input_features, num_output_features):
57
        super(_Transition, self).__init__()
58
        self.add_module('norm', nn.BatchNorm2d(num_input_features))
59
        self.add_module('relu', nn.ReLU(inplace=True))
60
        self.add_module('conv', nn.Conv2d(num_input_features, num_output_features,
61
                                          kernel_size=1, stride=1, bias=False))
62
        self.add_module('pool', nn.AvgPool2d(kernel_size=2, stride=2))
63
64
65
class DenseNet(nn.Module):
66
    r"""Densenet-BC model class, based on
67
    `"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`_
68
69
    Args:
70
        growth_rate (int) - how many filters to add each layer (`k` in paper)
71
        block_config (list of 4 ints) - how many layers in each pooling block
72
        num_init_features (int) - the number of filters to learn in the first convolution layer
73
        bn_size (int) - multiplicative factor for number of bottle neck layers
74
          (i.e. bn_size * k features in the bottleneck layer)
75
        drop_rate (float) - dropout rate after each dense layer
76
        num_classes (int) - number of classification classes
77
    """
78
    def __init__(self, growth_rate=32, block_config=(6, 12, 24, 16),
79
                 num_init_features=64, bn_size=4, drop_rate=0, num_classes=1000):
80
81
        super(DenseNet, self).__init__()
82
83
        # First convolution
84
        self.features = nn.Sequential(OrderedDict([
85
            ('conv0', nn.Conv2d(3, num_init_features, kernel_size=7, stride=2, padding=3, bias=False)),
86
            ('norm0', nn.BatchNorm2d(num_init_features)),
87
            ('relu0', nn.ReLU(inplace=True)),
88
            ('pool0', nn.MaxPool2d(kernel_size=3, stride=2, padding=1)),
89
        ]))
90
91
        # Each denseblock
92
        num_features = num_init_features
93
        for i, num_layers in enumerate(block_config):
94
            block = _DenseBlock(num_layers=num_layers, num_input_features=num_features,
95
                                bn_size=bn_size, growth_rate=growth_rate, drop_rate=drop_rate)
96
            self.features.add_module('denseblock%d' % (i + 1), block)
97
            num_features = num_features + num_layers * growth_rate
98
            if i != len(block_config) - 1:
99
                trans = _Transition(num_input_features=num_features, num_output_features=num_features // 2)
100
                self.features.add_module('transition%d' % (i + 1), trans)
101
                num_features = num_features // 2
102
103
        # Final batch norm
104
        self.features.add_module('norm5', nn.BatchNorm2d(num_features))
105
        
106
        # Linear layer
107
        # self.classifier = nn.Linear(num_features, 1000)
108
        # self.fc = nn.Linear(1000, 1)
109
        
110
        self.fc = nn.Linear(num_features, 1)
111
        
112
        # Official init from torch repo.
113
        for m in self.modules():
114
            if isinstance(m, nn.Conv2d):
115
                nn.init.kaiming_normal(m.weight.data)
116
            elif isinstance(m, nn.BatchNorm2d):
117
                m.weight.data.fill_(1)
118
                m.bias.data.zero_()
119
            elif isinstance(m, nn.Linear):
120
                m.bias.data.zero_()
121
122
    def forward(self, x):
123
        features = self.features(x)
124
        out = F.relu(features, inplace=True)
125
        out = F.avg_pool2d(out, kernel_size=7, stride=1).view(features.size(0), -1)
126
        # out = F.relu(self.classifier(out))
127
        out = F.sigmoid(self.fc(out))
128
        return out