--- a +++ b/Semantic Features/nnLearning.m @@ -0,0 +1,49 @@ +function [ classValue, errorRate ] = nnLearning( X, Y, hiddenLayerSize, category ) +% nnLearning trains a nn classifier and outputs the predictions +% Just using matlabs NN package. Make sure you have it (AILAB02 does +% not). + +%Gives outputs and predictions on everything. Assuming it is doing nFold +%validation +inputs = X'; +targets = Y(:,category)'; %using wrong dimension? thats why getting 7s? + +% Create a Fitting Network +net = fitnet(hiddenLayerSize); + + +% Setup Division of Data for Training, Validation, Testing +net.divideParam.trainRatio = 70/100; +net.divideParam.valRatio = 15/100; +net.divideParam.testRatio = 15/100; + + +% Train the Network +net.trainParam.showWindow = false; %Hide the GUI window +net.trainParam.showCommandLine = false; +[net,tr] = train(net,inputs,targets); + +% Test the Network +outputs = net(inputs); +classValue = outputs; +%install a max and min value +classValue = min(classValue, 5); +classValue = max(classValue, 1); +errors = gsubtract(targets,outputs); +performance = perform(net,targets,outputs); %MSE apparently + +%RMSE Error +errorRate = RMSE(net(inputs)', targets'); + +close all + +% View the Network +%view(net) + +% Plots +% Uncomment these lines to enable various plots. +%figure, plotperform(tr) +%figure, plottrainstate(tr) +%figure, plotfit(net,inputs,targets) +%figure, plotregression(targets,outputs) +%figure, ploterrhist(errors)