Switch to unified view

a b/Semantic Features/NotUsed/ttestScript.asv
1
%ttesting
2
3
%ttest((round(rtClassValue(:,7,2)) == round(Yaverage(:,7))), (round(wsClassValue(:,7,2)) == round(Yaverage(:,7))))
4
%Better on the final ensemble
5
%2 sample t test right? 
6
%Normality test? [a b c d ] =kstest(round(rtEnsPred(:,i)) == Yaverage(:,i))
7
8
%We want to do a one tail test. We only care if the ws is better or equal
9
%to rt (for now) vs ws being worse than rt. Therefore null hypothesis will
10
%be that wsAcc >= rtAcc (> comes from the one tail and exclusion).
11
%Alternative hypothesis will be wsAcc < rtAcc 
12
%'tail', 'left' Set the alternative hypothesis to be that the population mean of x is less than the population mean of y.
13
%make x = wsAcc and y = rtAcc
14
%Accepting the null hypothesis is success (Answer = 0. p >= 0.05)
15
%Rejecting the null hypothesis is failure (Meaning that wsAcc < rtAcc)
16
17
18
%dirty code. Overwrites the data
19
%for i = 1: 7
20
%    pwsEns(i) =  isGreaterorEqualTTest(wsEnsPred(:,i), rtEnsPred(:,i), Yaverage(:,i), Yaverage(:,i));
21
%end
22
23
%for i = 1: 7
24
%    pwsSConcatEns(i) =  isGreaterorEqualTTest(wsSConcatEnsPred(:,i), rtEnsPred(:,i), YwsMulti(:,i), Yaverage(:,i));
25
%end
26
27
%for i = 1:7
28
%    for j = 1:3
29
%        pws(j,i) =  isGreaterorEqualTTest(wsClassValue(:,i,j), rtClassValue(:,i,j), Yaverage(:,i), Yaverage(:,i));
30
%    end
31
%end
32
33
%for i = 1:7
34
%    for j = 1:3
35
%        pwsSConcat(j,i) =  isGreaterorEqualTTest(wsSConcatClassValue(:,i,j), rtClassValue(:,i,j), YwsMulti(:,i), Yaverage(:,i));
36
%    end
37
%end
38
39
%for i = 1:7
40
%    for j = 1:3
41
%        pwsSConcat(j,i) =  isGreaterorEqualTTest(wsSConcatClassValue(:,i,j), rtClassValue(:,i,j), YwsMulti(:,i), Yaverage(:,i));
42
%    end
43
%end
44
45
for i = 1:numCategories
46
    pwsMultiEnsGreater(i) =  isGreaterTTest(wsMultiEnsPred(:,i), rtEnsPred(:,i), Yaverage(:,i), Yaverage(:,i)); %low p means greater greater (not less)
47
    
48
    pwsMultiEnsNotLess(i) = isNotLessTTest(wsMultiEnsPred(:,i), rtEnsPred(:,i), Yaverage(:,i), Yaverage(:,i)); %high P means not less than
49
    pwsMultiEnsEqual(i) = isSameTTest(wsMultiEnsPred(:,i), rtEnsPred(:,i), Yaverage(:,i), Yaverage(:,i)); %high p means equal
50
end
51
52
53
wsMultiEnsImprovement = wsMultiEnsSuccess - rtEnsSuccess;
54
[wsMultiEnsImprovement;pwsMultiEns;pwsMultiEns<0.05];
55
56
%T test notes:
57
%Three types of t tests
58
%One Sample - If we already have a known (Iron Clad) value from other experiments and
59
%want to know if this experiment produced a differing result. - Nope
60
%Paired Two Sample - if you are testing the same guys but after changing
61
%something. Is this us? Same photos, different processing.
62
%Independant Two Sample - Probably us?
63
%a = Yes or no. uselsess
64
%b = probability they are the same. Lower is better. Less that 0.05 is good
65
%c = Confidence Interval. 
66
%d = tstat, the raw T value. df Degrees of Freedom. sd - standar deviation.