|
a |
|
b/Semantic Features/CrossValLearn.m |
|
|
1 |
function [ classValue, regError, successRate, trainedStruct ] = CrossValLearn2(X, Y, trainFunc, evalFunc) |
|
|
2 |
%CrossValLearn does cross validation learning |
|
|
3 |
% You need to supply it the function used to run the training and make the |
|
|
4 |
% prediction. Hardcoded to do 10 folds |
|
|
5 |
|
|
|
6 |
%Perform random sampling by just jumbling up the data then slicing the new |
|
|
7 |
%set into 4ths or nths. |
|
|
8 |
divisions = 10; |
|
|
9 |
numSamples = size(X,1); |
|
|
10 |
testSize = round(numSamples/divisions); |
|
|
11 |
|
|
|
12 |
%get a random order of our rows |
|
|
13 |
randomRows = randsample(numSamples, numSamples); |
|
|
14 |
|
|
|
15 |
%get vector of row order to undo the scrambling of the rows |
|
|
16 |
for i = 1:numSamples |
|
|
17 |
restoreRows(i) = find(i == randomRows); |
|
|
18 |
end |
|
|
19 |
|
|
|
20 |
Xmixed = X(randomRows,:); |
|
|
21 |
Ymixed = Y(randomRows,:); |
|
|
22 |
|
|
|
23 |
%perform process repeatedly with the test set different each time untill |
|
|
24 |
%all are covered. |
|
|
25 |
classValue = 0; |
|
|
26 |
testrows = cell(divisions,1); |
|
|
27 |
trainedStruct = cell(divisions,1); |
|
|
28 |
for i = 1:(divisions - 1) %perform all iterations guaranteeed to have a full share |
|
|
29 |
%start with testing at the beginning rows, then cycle down |
|
|
30 |
testrows{i} = [(i-1)*testSize + 1:i*testSize]; |
|
|
31 |
|
|
|
32 |
Xtest = Xmixed(testrows{i}, :); |
|
|
33 |
Ytest = Ymixed(testrows{i}, :); |
|
|
34 |
|
|
|
35 |
Xtrain = Xmixed; |
|
|
36 |
Xtrain(testrows{i},:) = []; |
|
|
37 |
Ytrain = Ymixed; |
|
|
38 |
Ytrain(testrows{i},:) = []; |
|
|
39 |
|
|
|
40 |
trainedStruct{i} = trainFunc(Xtrain, Ytrain); |
|
|
41 |
classValue = vertcat(classValue, evalFunc(Xtest, trainedStruct{i})); |
|
|
42 |
end |
|
|
43 |
%collect all the remaining rows. Could be undersized, but eliminates |
|
|
44 |
%problems of some rows getting lost |
|
|
45 |
testrows{divisions} = [(divisions-1)*testSize + 1:numSamples]; |
|
|
46 |
|
|
|
47 |
Xtest = Xmixed(testrows{divisions}, :); |
|
|
48 |
Ytest = Ymixed(testrows{divisions}, :); |
|
|
49 |
|
|
|
50 |
Xtrain = Xmixed; |
|
|
51 |
Xtrain(testrows{divisions},:) = []; |
|
|
52 |
Ytrain = Ymixed; |
|
|
53 |
Ytrain(testrows{divisions},:) = []; |
|
|
54 |
|
|
|
55 |
trainedStruct{divisions} = trainFunc(Xtrain, Ytrain); |
|
|
56 |
classValue = vertcat(classValue(2:end,:), evalFunc(Xtest, trainedStruct{divisions})); %Chop off the zero we put at the beginning |
|
|
57 |
|
|
|
58 |
%Resort everything to the original order so we can compare against other |
|
|
59 |
%algorithms |
|
|
60 |
classValue = classValue(restoreRows,:); |
|
|
61 |
|
|
|
62 |
%perform RMSE on allll the samples |
|
|
63 |
regError = RMSE(classValue, Y); %RMSE error. Maybe better as an array so we can combine in the future |
|
|
64 |
|
|
|
65 |
successRate = sum(round(classValue) == round(Y)) / size(Y,1); |
|
|
66 |
|
|
|
67 |
|
|
|
68 |
end |
|
|
69 |
|
|
|
70 |
|