[f84ece]: / procedures / attack_pipeline.py

Download this file

227 lines (201 with data), 10.4 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
# MIT License
#
# Copyright (c) 2019 Yisroel Mirsky
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
from config import * #user configurations
from keras.models import load_model
import os
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = config['gpus']
from utils.equalizer import *
import pickle
import numpy as np
import time
import scipy.ndimage
from utils.dicom_utils import *
from utils.utils import *
# in this version: coords must be provided manually (for autnomaic candiate location selection, use[x])
# in this version: we scale the entire scan. For faster tampering, one should only scale the cube that is being tampred.
# in this version: dicom->dicom, dicom->numpy, mhd/raw->numpy supported
class scan_manipulator:
def __init__(self):
print("===Init Tamperer===")
self.scan = None
self.load_path = None
self.m_zlims = config['mask_zlims']
self.m_ylims = config['mask_ylims']
self.m_xlims = config['mask_xlims']
#load model and parameters
self.model_inj_path = config['modelpath_inject']
self.model_rem_path = config['modelpath_remove']
#load models
print("Loading models")
if os.path.exists(os.path.join(self.model_inj_path,"G_model.h5")):
self.generator_inj = load_model(os.path.join(self.model_inj_path,"G_model.h5"))
# load normalization params
self.norm_inj = np.load(os.path.join(self.model_inj_path, 'normalization.npy'))
# load equalization params
self.eq_inj = histEq([], path=os.path.join(self.model_inj_path, 'equalization.pkl'))
print("Loaded Injector Model")
else:
self.generator_inj = None
print("Failed to Load Injector Model")
if os.path.exists(os.path.join(self.model_rem_path,"G_model.h5")):
self.generator_rem = load_model(os.path.join(self.model_rem_path,"G_model.h5"))
# load normalization params
self.norm_rem = np.load(os.path.join(self.model_rem_path, 'normalization.npy'))
# load equalization params
self.eq_rem = histEq([], path=os.path.join(self.model_rem_path, 'equalization.pkl'))
print("Loaded Remover Model")
else:
self.generator_rem = None
print("Failed to Load Remover Model")
# loads dicom/mhd to be tampered
# Provide path to a *.dcm file or the *mhd file. The contaitning folder should have the other slices)
def load_target_scan(self, load_path):
self.load_path = load_path
print('Loading scan')
self.scan, self.scan_spacing, self.scan_orientation, self.scan_origin, self.scan_raw_slices = load_scan(load_path)
self.scan = self.scan.astype(float)
# saves tampered scan as 'dicom' series or 'numpy' serialization
def save_tampered_scan(self, save_dir, output_type='dicom'):
if self.scan is None:
print('Cannot save: load a target scan first.')
return
print('Saving scan')
if output_type == 'dicom':
if self.load_path.split('.')[-1]=="mhd":
toDicom(save_dir=save_dir, img_array=self.scan, pixel_spacing=self.scan_spacing, orientation=self.scan_orientation)
else: #input was dicom
save_dicom(self.scan, origional_raw_slices=self.scan_raw_slices, dst_directory=save_dir)
else: #save as numpy
os.makedirs(save_dir, exist_ok=True)
np.save(os.path.join(save_dir,'tampered_scan.np'),self.scan)
print('Done.')
# tamper loaded scan at given voxel (index) coordinate
# coord: E.g. vox: slice_indx, y_indx, x_indx world: -324.3, 23, -234
# action: 'inject' or 'remove'
def tamper(self, coord, action="inject", isVox=True):
if self.scan is None:
print('Cannot tamper: load a target scan first.')
return
if (action == 'inject') and (self.generator_inj is None):
print('Cannot inject: no injection model loaded.')
return
if (action == 'remove') and (self.generator_rem is None):
print('Cannot inject: no removal model loaded.')
return
if action == 'inject':
print('===Injecting Evidence===')
else:
print('===Removing Evidence===')
if not isVox:
coord = world2vox(coord, self.scan_spacing, self.scan_orientation, self.scan_origin)
### Cut Location
print("Cutting out target region")
cube_shape = get_scaled_shape(config["cube_shape"], 1/self.scan_spacing)
clean_cube_unscaled = cutCube(self.scan, coord, cube_shape)
clean_cube, resize_factor = scale_scan(clean_cube_unscaled,self.scan_spacing)
# Store backup reference
sdim = int(np.max(cube_shape)*1.3)
clean_cube_unscaled2 = cutCube(self.scan, coord, np.array([sdim,sdim,sdim])) #for noise touch ups later
### Normalize/Equalize Location
print("Normalizing sample")
if action == 'inject':
clean_cube_eq = self.eq_inj.equalize(clean_cube)
clean_cube_norm = (clean_cube_eq - self.norm_inj[0]) / ((self.norm_inj[2] - self.norm_inj[1]))
else:
clean_cube_eq = self.eq_rem.equalize(clean_cube)
clean_cube_norm = (clean_cube_eq - self.norm_rem[0]) / ((self.norm_rem[2] - self.norm_rem[1]))
######## Inject Cancer ##########
### Inject/Remove evidence
if action == 'inject':
print("Injecting evidence")
else:
print("Removing evidence")
x = np.copy(clean_cube_norm)
x[self.m_zlims[0]:self.m_zlims[1], self.m_xlims[0]:self.m_xlims[1], self.m_ylims[0]:self.m_ylims[1]] = 0
x = x.reshape((1, config['cube_shape'][0], config['cube_shape'][1], config['cube_shape'][2], 1))
if action == 'inject':
x_mal = self.generator_inj.predict([x])
else:
x_mal = self.generator_rem.predict([x])
x_mal = x_mal.reshape(config['cube_shape'])
### De-Norm/De-equalize
print("De-normalizing sample")
x_mal[x_mal > .5] = .5 # fix boundry overflow
x_mal[x_mal < -.5] = -.5
if action == 'inject':
mal_cube_eq = x_mal * ((self.norm_inj[2] - self.norm_inj[1])) + self.norm_inj[0]
mal_cube = self.eq_inj.dequalize(mal_cube_eq)
else:
mal_cube_eq = x_mal * ((self.norm_rem[2] - self.norm_rem[1])) + self.norm_rem[0]
mal_cube = self.eq_rem.dequalize(mal_cube_eq)
# Correct for pixel norm error
# fix overflow
bad = np.where(mal_cube > 2000)
# mal_cube[bad] = np.median(clean_cube)
for i in range(len(bad[0])):
neiborhood = cutCube(mal_cube, np.array([bad[0][i], bad[1][i], bad[2][i]]), (np.ones(3)*5).astype(int),-1000)
mal_cube[bad[0][i], bad[1][i], bad[2][i]] = np.mean(neiborhood)
# fix underflow
mal_cube[mal_cube < -1000] = -1000
### Paste Location
print("Pasting sample into scan")
mal_cube_scaled, resize_factor = scale_scan(mal_cube,1/self.scan_spacing)
self.scan = pasteCube(self.scan, mal_cube_scaled, coord)
### Noise Touch-ups
print("Adding noise touch-ups...")
noise_map_dim = clean_cube_unscaled2.shape
ben_cube_ext = clean_cube_unscaled2
mal_cube_ext = cutCube(self.scan, coord, noise_map_dim)
local_sample = clean_cube_unscaled
# Init Touch-ups
if action == 'inject': #inject type
noisemap = np.random.randn(150, 200, 300) * np.std(local_sample[local_sample < -600]) * .6
kernel_size = 3
factors = sigmoid((mal_cube_ext + 700) / 70)
k = kern01(mal_cube_ext.shape[0], kernel_size)
for i in range(factors.shape[0]):
factors[i, :, :] = factors[i, :, :] * k
else: #remove type
noisemap = np.random.randn(150, 200, 200) * 30
kernel_size = .1
k = kern01(mal_cube_ext.shape[0], kernel_size)
factors = None
# Perform touch-ups
if config['copynoise']: # copying similar noise from hard coded location over this lcoation (usually more realistic)
benm = cutCube(self.scan, np.array([int(self.scan.shape[0] / 2), int(self.scan.shape[1]*.43), int(self.scan.shape[2]*.27)]), noise_map_dim)
x = np.copy(benm)
x[x > -800] = np.mean(x[x < -800])
noise = x - np.mean(x)
else: # gaussian interpolated noise is used
rf = np.ones((3,)) * (60 / np.std(local_sample[local_sample < -600])) * 1.3
np.random.seed(np.int64(time.time()))
noisemap_s = scipy.ndimage.interpolation.zoom(noisemap, rf, mode='nearest')
noise = noisemap_s[:noise_map_dim, :noise_map_dim, :noise_map_dim]
mal_cube_ext += noise
if action == 'inject': # Injection
final_cube_s = np.maximum((mal_cube_ext * factors + ben_cube_ext * (1 - factors)), ben_cube_ext)
else: #Removal
minv = np.min((np.min(mal_cube_ext), np.min(ben_cube_ext)))
final_cube_s = (mal_cube_ext + minv) * k + (ben_cube_ext + minv) * (1 - k) - minv
self.scan = pasteCube(self.scan, final_cube_s, coord)
print('touch-ups complete')