|
a |
|
b/src/compnet.py |
|
|
1 |
import argparse |
|
|
2 |
import numpy as np |
|
|
3 |
import os |
|
|
4 |
import sys |
|
|
5 |
import warnings |
|
|
6 |
with warnings.catch_warnings(): |
|
|
7 |
warnings.filterwarnings("ignore", category=FutureWarning) |
|
|
8 |
import tensorflow as tf |
|
|
9 |
|
|
|
10 |
import keras |
|
|
11 |
from keras.models import Model |
|
|
12 |
from keras.layers import Input,merge, concatenate, Conv2D, MaxPooling2D, Activation, UpSampling2D,Dropout,Conv2DTranspose,add,multiply |
|
|
13 |
from keras.layers.normalization import BatchNormalization as bn |
|
|
14 |
from keras.optimizers import RMSprop, Adam |
|
|
15 |
from keras import regularizers, losses, backend as K |
|
|
16 |
from keras.callbacks import EarlyStopping, ModelCheckpoint, CSVLogger, ModelCheckpoint, TensorBoard |
|
|
17 |
os.environ['CUDA_VISIBLE_DEVICES']="0" |
|
|
18 |
|
|
|
19 |
smooth = 1. |
|
|
20 |
def dice_coef(y_true, y_pred): |
|
|
21 |
|
|
|
22 |
y_true_f = K.flatten(y_true) |
|
|
23 |
y_pred_f = K.flatten(y_pred) |
|
|
24 |
intersection = K.sum(y_true_f * y_pred_f) |
|
|
25 |
return (2. * intersection + smooth) / (K.sum(y_true_f) + K.sum(y_pred_f) + smooth) |
|
|
26 |
|
|
|
27 |
def dice_coef_test(y_true, y_pred): |
|
|
28 |
|
|
|
29 |
y_true_f = np.array(y_true).flatten() |
|
|
30 |
y_pred_f =np.array(y_pred).flatten() |
|
|
31 |
intersection = np.sum(y_true_f * y_pred_f) |
|
|
32 |
return (2. * intersection + smooth) / (np.sum(y_true_f) + np.sum(y_pred_f) + smooth) |
|
|
33 |
|
|
|
34 |
|
|
|
35 |
def dice_coef_loss(y_true, y_pred): |
|
|
36 |
return -dice_coef(y_true, y_pred) |
|
|
37 |
|
|
|
38 |
def neg_dice_coef_loss(y_true, y_pred): |
|
|
39 |
return dice_coef(y_true, y_pred) |
|
|
40 |
|
|
|
41 |
|
|
|
42 |
#define the model |
|
|
43 |
def Comp_U_Net(input_shape,learn_rate=1e-3): |
|
|
44 |
|
|
|
45 |
l2_lambda = 0.0002 |
|
|
46 |
DropP = 0.3 |
|
|
47 |
kernel_size=3 |
|
|
48 |
|
|
|
49 |
inputs = Input(input_shape,name='ip0') |
|
|
50 |
|
|
|
51 |
|
|
|
52 |
conv0a = Conv2D(32, (kernel_size, kernel_size), activation='relu', padding='same', |
|
|
53 |
kernel_regularizer=regularizers.l2(l2_lambda) )(inputs) |
|
|
54 |
|
|
|
55 |
|
|
|
56 |
conv0a = bn()(conv0a) |
|
|
57 |
|
|
|
58 |
conv0b = Conv2D(32, (kernel_size, kernel_size), activation='relu', padding='same', |
|
|
59 |
kernel_regularizer=regularizers.l2(l2_lambda) )(conv0a) |
|
|
60 |
|
|
|
61 |
conv0b = bn()(conv0b) |
|
|
62 |
|
|
|
63 |
|
|
|
64 |
pool0 = MaxPooling2D(pool_size=(2, 2))(conv0b) |
|
|
65 |
|
|
|
66 |
pool0 = Dropout(DropP)(pool0) |
|
|
67 |
|
|
|
68 |
|
|
|
69 |
conv1a = Conv2D(32, (kernel_size, kernel_size), activation='relu', padding='same', |
|
|
70 |
kernel_regularizer=regularizers.l2(l2_lambda) )(pool0) |
|
|
71 |
|
|
|
72 |
|
|
|
73 |
conv1a = bn()(conv1a) |
|
|
74 |
|
|
|
75 |
conv1b = Conv2D(32, (kernel_size, kernel_size), activation='relu', padding='same', |
|
|
76 |
kernel_regularizer=regularizers.l2(l2_lambda) )(conv1a) |
|
|
77 |
|
|
|
78 |
conv1b = bn()(conv1b) |
|
|
79 |
|
|
|
80 |
|
|
|
81 |
|
|
|
82 |
pool1 = MaxPooling2D(pool_size=(2, 2))(conv1b) |
|
|
83 |
|
|
|
84 |
pool1 = Dropout(DropP)(pool1) |
|
|
85 |
|
|
|
86 |
|
|
|
87 |
|
|
|
88 |
|
|
|
89 |
|
|
|
90 |
conv2a = Conv2D(64, (kernel_size, kernel_size), activation='relu', padding='same', |
|
|
91 |
kernel_regularizer=regularizers.l2(l2_lambda) )(pool1) |
|
|
92 |
|
|
|
93 |
conv2a = bn()(conv2a) |
|
|
94 |
|
|
|
95 |
conv2b = Conv2D(64, (kernel_size, kernel_size), activation='relu', padding='same', |
|
|
96 |
kernel_regularizer=regularizers.l2(l2_lambda) )(conv2a) |
|
|
97 |
|
|
|
98 |
conv2b = bn()(conv2b) |
|
|
99 |
|
|
|
100 |
pool2 = MaxPooling2D(pool_size=(2, 2))(conv2b) |
|
|
101 |
|
|
|
102 |
pool2 = Dropout(DropP)(pool2) |
|
|
103 |
|
|
|
104 |
|
|
|
105 |
|
|
|
106 |
|
|
|
107 |
|
|
|
108 |
|
|
|
109 |
|
|
|
110 |
conv3a = Conv2D(128, (kernel_size, kernel_size), activation='relu', padding='same', |
|
|
111 |
kernel_regularizer=regularizers.l2(l2_lambda) )(pool2) |
|
|
112 |
|
|
|
113 |
conv3a = bn()(conv3a) |
|
|
114 |
|
|
|
115 |
conv3b = Conv2D(128, (kernel_size, kernel_size), activation='relu', padding='same', |
|
|
116 |
kernel_regularizer=regularizers.l2(l2_lambda) )(conv3a) |
|
|
117 |
|
|
|
118 |
conv3b = bn()(conv3b) |
|
|
119 |
|
|
|
120 |
|
|
|
121 |
|
|
|
122 |
pool3 = MaxPooling2D(pool_size=(2, 2))(conv3b) |
|
|
123 |
|
|
|
124 |
pool3 = Dropout(DropP)(pool3) |
|
|
125 |
|
|
|
126 |
|
|
|
127 |
conv4a = Conv2D(256, (kernel_size, kernel_size), activation='relu', padding='same', |
|
|
128 |
kernel_regularizer=regularizers.l2(l2_lambda) )(pool3) |
|
|
129 |
|
|
|
130 |
conv4a = bn()(conv4a) |
|
|
131 |
|
|
|
132 |
conv4b = Conv2D(256, (kernel_size, kernel_size), activation='relu', padding='same', |
|
|
133 |
kernel_regularizer=regularizers.l2(l2_lambda) )(conv4a) |
|
|
134 |
|
|
|
135 |
conv4b = bn()(conv4b) |
|
|
136 |
|
|
|
137 |
pool4 = MaxPooling2D(pool_size=(2, 2))(conv4b) |
|
|
138 |
|
|
|
139 |
pool4 = Dropout(DropP)(pool4) |
|
|
140 |
|
|
|
141 |
|
|
|
142 |
|
|
|
143 |
|
|
|
144 |
|
|
|
145 |
conv5a = Conv2D(512, (kernel_size, kernel_size), activation='relu', padding='same', |
|
|
146 |
kernel_regularizer=regularizers.l2(l2_lambda) )(pool4) |
|
|
147 |
|
|
|
148 |
conv5a = bn()(conv5a) |
|
|
149 |
|
|
|
150 |
conv5b = Conv2D(512, (kernel_size, kernel_size), activation='relu', padding='same', |
|
|
151 |
kernel_regularizer=regularizers.l2(l2_lambda) )(conv5a) |
|
|
152 |
|
|
|
153 |
conv5b = bn()(conv5b) |
|
|
154 |
|
|
|
155 |
|
|
|
156 |
|
|
|
157 |
|
|
|
158 |
|
|
|
159 |
up6 = concatenate([Conv2DTranspose(256,(2, 2), strides=(2, 2), padding='same')(conv5b), (conv4b)],name='up6', axis=3) |
|
|
160 |
|
|
|
161 |
|
|
|
162 |
up6 = Dropout(DropP)(up6) |
|
|
163 |
|
|
|
164 |
conv6a = Conv2D(256, (kernel_size, kernel_size), activation='relu', padding='same', |
|
|
165 |
kernel_regularizer=regularizers.l2(l2_lambda) )(up6) |
|
|
166 |
|
|
|
167 |
conv6a = bn()(conv6a) |
|
|
168 |
|
|
|
169 |
conv6b = Conv2D(256, (kernel_size, kernel_size), activation='relu', padding='same', |
|
|
170 |
kernel_regularizer=regularizers.l2(l2_lambda) )(conv6a) |
|
|
171 |
|
|
|
172 |
conv6b = bn()(conv6b) |
|
|
173 |
|
|
|
174 |
|
|
|
175 |
|
|
|
176 |
|
|
|
177 |
|
|
|
178 |
up7 = concatenate([Conv2DTranspose(128,(2, 2), strides=(2, 2), padding='same')(conv6b),(conv3b)],name='up7', axis=3) |
|
|
179 |
|
|
|
180 |
up7 = Dropout(DropP)(up7) |
|
|
181 |
#add second output here |
|
|
182 |
|
|
|
183 |
conv7a = Conv2D(128, (kernel_size, kernel_size), activation='relu', padding='same', |
|
|
184 |
kernel_regularizer=regularizers.l2(l2_lambda) )(up7) |
|
|
185 |
|
|
|
186 |
conv7a = bn()(conv7a) |
|
|
187 |
|
|
|
188 |
|
|
|
189 |
|
|
|
190 |
conv7b = Conv2D(128, (kernel_size, kernel_size), activation='relu', padding='same', |
|
|
191 |
kernel_regularizer=regularizers.l2(l2_lambda) )(conv7a) |
|
|
192 |
|
|
|
193 |
conv7b = bn()(conv7b) |
|
|
194 |
|
|
|
195 |
|
|
|
196 |
|
|
|
197 |
|
|
|
198 |
|
|
|
199 |
|
|
|
200 |
up8 = concatenate([Conv2DTranspose(64,(2, 2), strides=(2, 2), padding='same')(conv7b), (conv2b)],name='up8', axis=3) |
|
|
201 |
|
|
|
202 |
up8 = Dropout(DropP)(up8) |
|
|
203 |
|
|
|
204 |
conv8a = Conv2D(64, (kernel_size, kernel_size), activation='relu', padding='same', |
|
|
205 |
kernel_regularizer=regularizers.l2(l2_lambda) )(up8) |
|
|
206 |
|
|
|
207 |
conv8a = bn()(conv8a) |
|
|
208 |
|
|
|
209 |
|
|
|
210 |
conv8b = Conv2D(64, (kernel_size, kernel_size), activation='relu', padding='same', |
|
|
211 |
kernel_regularizer=regularizers.l2(l2_lambda) )(conv8a) |
|
|
212 |
|
|
|
213 |
conv8b = bn()(conv8b) |
|
|
214 |
|
|
|
215 |
|
|
|
216 |
|
|
|
217 |
up9 = concatenate([Conv2DTranspose(32,(2, 2), strides=(2, 2), padding='same')(conv8b),(conv1b)],name='up9',axis=3) |
|
|
218 |
|
|
|
219 |
|
|
|
220 |
conv9a = Conv2D(32, (kernel_size, kernel_size), activation='relu', padding='same', |
|
|
221 |
kernel_regularizer=regularizers.l2(l2_lambda) )(up9) |
|
|
222 |
|
|
|
223 |
conv9a = bn()(conv9a) |
|
|
224 |
|
|
|
225 |
conv9b = Conv2D(12, (kernel_size, kernel_size), activation='relu', padding='same', |
|
|
226 |
kernel_regularizer=regularizers.l2(l2_lambda) )(conv9a) |
|
|
227 |
|
|
|
228 |
conv9b = bn()(conv9b) |
|
|
229 |
|
|
|
230 |
|
|
|
231 |
|
|
|
232 |
|
|
|
233 |
up10 = concatenate([Conv2DTranspose(32,(2, 2), strides=(2, 2), padding='same')(conv9b),(conv0b)],name='up10',axis=3) |
|
|
234 |
|
|
|
235 |
conv10a = Conv2D(32, (kernel_size, kernel_size), activation='relu', padding='same', |
|
|
236 |
kernel_regularizer=regularizers.l2(l2_lambda) )(up10) |
|
|
237 |
|
|
|
238 |
conv10a = bn()(conv10a) |
|
|
239 |
|
|
|
240 |
|
|
|
241 |
|
|
|
242 |
conv10b = Conv2D(32, (kernel_size, kernel_size), activation='relu', padding='same', |
|
|
243 |
kernel_regularizer=regularizers.l2(l2_lambda) )(conv10a) |
|
|
244 |
|
|
|
245 |
conv10b = bn()(conv10b) |
|
|
246 |
|
|
|
247 |
|
|
|
248 |
|
|
|
249 |
final_op=Conv2D(1, (1, 1), activation='sigmoid',name='final_op')(conv10b) |
|
|
250 |
|
|
|
251 |
|
|
|
252 |
|
|
|
253 |
#---------------------------------------------------------------------------------------------------------------------------------- |
|
|
254 |
|
|
|
255 |
#second branch - brain |
|
|
256 |
xup6 = concatenate([Conv2DTranspose(256,(2, 2), strides=(2, 2), padding='same')(conv5b), (conv4b)],name='xup6', axis=3) |
|
|
257 |
|
|
|
258 |
|
|
|
259 |
|
|
|
260 |
xup6 = Dropout(DropP)(xup6) |
|
|
261 |
|
|
|
262 |
xconv6a = Conv2D(256, (kernel_size, kernel_size), activation='relu', padding='same', |
|
|
263 |
kernel_regularizer=regularizers.l2(l2_lambda) )(xup6) |
|
|
264 |
|
|
|
265 |
xconv6a = bn()(xconv6a) |
|
|
266 |
|
|
|
267 |
|
|
|
268 |
|
|
|
269 |
xconv6b = Conv2D(256, (kernel_size, kernel_size), activation='relu', padding='same', |
|
|
270 |
kernel_regularizer=regularizers.l2(l2_lambda) )(xconv6a) |
|
|
271 |
|
|
|
272 |
xconv6b = bn()(xconv6b) |
|
|
273 |
|
|
|
274 |
|
|
|
275 |
|
|
|
276 |
|
|
|
277 |
|
|
|
278 |
xup7 = concatenate([Conv2DTranspose(128,(2, 2), strides=(2, 2), padding='same')(xconv6b),(conv3b)],name='xup7', axis=3) |
|
|
279 |
|
|
|
280 |
xup7 = Dropout(DropP)(xup7) |
|
|
281 |
|
|
|
282 |
xconv7a = Conv2D(128, (kernel_size, kernel_size), activation='relu', padding='same', |
|
|
283 |
kernel_regularizer=regularizers.l2(l2_lambda) )(xup7) |
|
|
284 |
|
|
|
285 |
xconv7a = bn()(xconv7a) |
|
|
286 |
|
|
|
287 |
|
|
|
288 |
xconv7b = Conv2D(128, (kernel_size, kernel_size), activation='relu', padding='same', |
|
|
289 |
kernel_regularizer=regularizers.l2(l2_lambda) )(xconv7a) |
|
|
290 |
|
|
|
291 |
xconv7b = bn()(xconv7b) |
|
|
292 |
|
|
|
293 |
|
|
|
294 |
xup8 = concatenate([Conv2DTranspose(64,(2, 2), strides=(2, 2), padding='same')(xconv7b),(conv2b)],name='xup8', axis=3) |
|
|
295 |
|
|
|
296 |
xup8 = Dropout(DropP)(xup8) |
|
|
297 |
#add third xoutxout here |
|
|
298 |
|
|
|
299 |
xconv8a = Conv2D(64, (kernel_size, kernel_size), activation='relu', padding='same', |
|
|
300 |
kernel_regularizer=regularizers.l2(l2_lambda) )(xup8) |
|
|
301 |
|
|
|
302 |
xconv8a = bn()(xconv8a) |
|
|
303 |
|
|
|
304 |
|
|
|
305 |
xconv8b = Conv2D(64, (kernel_size, kernel_size), activation='relu', padding='same', |
|
|
306 |
kernel_regularizer=regularizers.l2(l2_lambda) )(xconv8a) |
|
|
307 |
|
|
|
308 |
xconv8b = bn()(xconv8b) |
|
|
309 |
|
|
|
310 |
|
|
|
311 |
|
|
|
312 |
|
|
|
313 |
xup9 = concatenate([Conv2DTranspose(32,(2, 2), strides=(2, 2), padding='same')(xconv8b), (conv1b)],name='xup9',axis=3) |
|
|
314 |
|
|
|
315 |
xup9 = Dropout(DropP)(xup9) |
|
|
316 |
|
|
|
317 |
|
|
|
318 |
xconv9a = Conv2D(32, (kernel_size, kernel_size), activation='relu', padding='same', |
|
|
319 |
kernel_regularizer=regularizers.l2(l2_lambda) )(xup9) |
|
|
320 |
|
|
|
321 |
xconv9a = bn()(xconv9a) |
|
|
322 |
|
|
|
323 |
|
|
|
324 |
xconv9b = Conv2D(32, (kernel_size, kernel_size), activation='relu', padding='same', |
|
|
325 |
kernel_regularizer=regularizers.l2(l2_lambda) )(xconv9a) |
|
|
326 |
|
|
|
327 |
xconv9b = bn()(xconv9b) |
|
|
328 |
|
|
|
329 |
|
|
|
330 |
|
|
|
331 |
xup10 = concatenate([Conv2DTranspose(32,(2, 2), strides=(2, 2), padding='same')(xconv9b), (conv0b)],name='xup10',axis=3) |
|
|
332 |
|
|
|
333 |
xup10 = Dropout(DropP)(xup10) |
|
|
334 |
|
|
|
335 |
|
|
|
336 |
xconv10a = Conv2D(32, (kernel_size, kernel_size), activation='relu', padding='same', |
|
|
337 |
kernel_regularizer=regularizers.l2(l2_lambda) )(xup10) |
|
|
338 |
|
|
|
339 |
xconv10a = bn()(xconv10a) |
|
|
340 |
|
|
|
341 |
|
|
|
342 |
xconv10b = Conv2D(32, (kernel_size, kernel_size), activation='relu', padding='same', |
|
|
343 |
kernel_regularizer=regularizers.l2(l2_lambda) )(xconv10a) |
|
|
344 |
|
|
|
345 |
xconv10b = bn()(xconv10b) |
|
|
346 |
|
|
|
347 |
|
|
|
348 |
|
|
|
349 |
|
|
|
350 |
|
|
|
351 |
|
|
|
352 |
xfinal_op=Conv2D(1, (1, 1), activation='sigmoid',name='xfinal_op')(xconv10b) |
|
|
353 |
|
|
|
354 |
|
|
|
355 |
#-----------------------------third branch |
|
|
356 |
|
|
|
357 |
|
|
|
358 |
|
|
|
359 |
#Concatenation fed to the reconstruction layer of all 3 |
|
|
360 |
|
|
|
361 |
x_u_net_op0=keras.layers.concatenate([final_op,xfinal_op,keras.layers.add([final_op,xfinal_op])],name='res_a') |
|
|
362 |
|
|
|
363 |
|
|
|
364 |
|
|
|
365 |
|
|
|
366 |
|
|
|
367 |
|
|
|
368 |
|
|
|
369 |
|
|
|
370 |
|
|
|
371 |
res_1_conv0a = Conv2D( 32, (kernel_size, kernel_size), activation='relu', padding='same', |
|
|
372 |
kernel_regularizer=regularizers.l2(l2_lambda) )(x_u_net_op0) |
|
|
373 |
|
|
|
374 |
|
|
|
375 |
res_1_conv0a = bn()(res_1_conv0a) |
|
|
376 |
|
|
|
377 |
res_1_conv0b = Conv2D(32, (kernel_size, kernel_size), activation='relu', padding='same', |
|
|
378 |
kernel_regularizer=regularizers.l2(l2_lambda) )(res_1_conv0a) |
|
|
379 |
|
|
|
380 |
res_1_conv0b = bn()(res_1_conv0b) |
|
|
381 |
|
|
|
382 |
res_1_pool0 = MaxPooling2D(pool_size=(2, 2))(res_1_conv0b) |
|
|
383 |
|
|
|
384 |
res_1_pool0 = Dropout(DropP)(res_1_pool0) |
|
|
385 |
|
|
|
386 |
|
|
|
387 |
|
|
|
388 |
|
|
|
389 |
res_1_conv1a = Conv2D( 32, (kernel_size, kernel_size), activation='relu', padding='same', |
|
|
390 |
kernel_regularizer=regularizers.l2(l2_lambda) )(res_1_pool0) |
|
|
391 |
|
|
|
392 |
|
|
|
393 |
res_1_conv1a = bn()(res_1_conv1a) |
|
|
394 |
|
|
|
395 |
res_1_conv1b = Conv2D(32, (kernel_size, kernel_size), activation='relu', padding='same', |
|
|
396 |
kernel_regularizer=regularizers.l2(l2_lambda) )(res_1_conv1a) |
|
|
397 |
|
|
|
398 |
res_1_conv1b = bn()(res_1_conv1b) |
|
|
399 |
|
|
|
400 |
res_1_pool1 = MaxPooling2D(pool_size=(2, 2))(res_1_conv1b) |
|
|
401 |
|
|
|
402 |
res_1_pool1 = Dropout(DropP)(res_1_pool1) |
|
|
403 |
|
|
|
404 |
|
|
|
405 |
|
|
|
406 |
|
|
|
407 |
|
|
|
408 |
res_1_conv2a = Conv2D(64, (kernel_size, kernel_size), activation='relu', padding='same', |
|
|
409 |
kernel_regularizer=regularizers.l2(l2_lambda) )(res_1_pool1) |
|
|
410 |
|
|
|
411 |
res_1_conv2a = bn()(res_1_conv2a) |
|
|
412 |
|
|
|
413 |
res_1_conv2b = Conv2D(64, (kernel_size, kernel_size), activation='relu', padding='same', |
|
|
414 |
kernel_regularizer=regularizers.l2(l2_lambda) )(res_1_conv2a) |
|
|
415 |
|
|
|
416 |
res_1_conv2b = bn()(res_1_conv2b) |
|
|
417 |
|
|
|
418 |
|
|
|
419 |
res_1_pool2 = MaxPooling2D(pool_size=(2, 2))(res_1_conv2b) |
|
|
420 |
|
|
|
421 |
res_1_pool2 = Dropout(DropP)(res_1_pool2) |
|
|
422 |
|
|
|
423 |
|
|
|
424 |
|
|
|
425 |
|
|
|
426 |
|
|
|
427 |
|
|
|
428 |
|
|
|
429 |
res_1_conv3a = Conv2D(128, (kernel_size, kernel_size), activation='relu', padding='same', |
|
|
430 |
kernel_regularizer=regularizers.l2(l2_lambda) )(res_1_pool2) |
|
|
431 |
|
|
|
432 |
res_1_conv3a = bn()(res_1_conv3a) |
|
|
433 |
|
|
|
434 |
res_1_conv3b = Conv2D(128, (kernel_size, kernel_size), activation='relu', padding='same', |
|
|
435 |
kernel_regularizer=regularizers.l2(l2_lambda) )(res_1_conv3a) |
|
|
436 |
|
|
|
437 |
res_1_conv3b = bn()(res_1_conv3b) |
|
|
438 |
|
|
|
439 |
res_1_pool3 = MaxPooling2D(pool_size=(2, 2))(res_1_conv3b) |
|
|
440 |
|
|
|
441 |
res_1_pool3 = Dropout(DropP)(res_1_pool3) |
|
|
442 |
|
|
|
443 |
|
|
|
444 |
res_1_conv4a = Conv2D(256, (kernel_size, kernel_size), activation='relu', padding='same', |
|
|
445 |
kernel_regularizer=regularizers.l2(l2_lambda) )(res_1_pool3) |
|
|
446 |
|
|
|
447 |
res_1_conv4a = bn()(res_1_conv4a) |
|
|
448 |
|
|
|
449 |
res_1_conv4b = Conv2D(256, (kernel_size, kernel_size), activation='relu', padding='same', |
|
|
450 |
kernel_regularizer=regularizers.l2(l2_lambda) )(res_1_conv4a) |
|
|
451 |
|
|
|
452 |
res_1_conv4b = bn()(res_1_conv4b) |
|
|
453 |
|
|
|
454 |
|
|
|
455 |
res_1_pool4 = MaxPooling2D(pool_size=(2, 2))(res_1_conv4b) |
|
|
456 |
|
|
|
457 |
res_1_pool4 = Dropout(DropP)(res_1_pool4) |
|
|
458 |
|
|
|
459 |
|
|
|
460 |
|
|
|
461 |
|
|
|
462 |
|
|
|
463 |
res_1_conv5a = Conv2D(512, (kernel_size, kernel_size), activation='relu', padding='same', |
|
|
464 |
kernel_regularizer=regularizers.l2(l2_lambda) )(res_1_pool4) |
|
|
465 |
|
|
|
466 |
res_1_conv5a = bn()(res_1_conv5a) |
|
|
467 |
|
|
|
468 |
res_1_conv5b = Conv2D(512, (kernel_size, kernel_size), activation='relu', padding='same', |
|
|
469 |
kernel_regularizer=regularizers.l2(l2_lambda) )(res_1_conv5a) |
|
|
470 |
|
|
|
471 |
res_1_conv5b = bn()(res_1_conv5b) |
|
|
472 |
|
|
|
473 |
|
|
|
474 |
|
|
|
475 |
|
|
|
476 |
res_1_up6 = concatenate([Conv2DTranspose(256,(2, 2), strides=(2, 2), padding='same')(res_1_conv5b), (res_1_conv4b)],name='res_1_up6', axis=3) |
|
|
477 |
|
|
|
478 |
|
|
|
479 |
res_1_up6 = Dropout(DropP)(res_1_up6) |
|
|
480 |
|
|
|
481 |
res_1_conv6a = Conv2D(256, (kernel_size, kernel_size), activation='relu', padding='same', |
|
|
482 |
kernel_regularizer=regularizers.l2(l2_lambda) )(res_1_up6) |
|
|
483 |
|
|
|
484 |
res_1_conv6a = bn()(res_1_conv6a) |
|
|
485 |
|
|
|
486 |
|
|
|
487 |
res_1_conv6b = Conv2D(256, (kernel_size, kernel_size), activation='relu', padding='same', |
|
|
488 |
kernel_regularizer=regularizers.l2(l2_lambda) )(res_1_conv6a) |
|
|
489 |
|
|
|
490 |
res_1_conv6b = bn()(res_1_conv6b) |
|
|
491 |
|
|
|
492 |
|
|
|
493 |
|
|
|
494 |
res_1_up7 = concatenate([Conv2DTranspose(128,(2, 2), strides=(2, 2), padding='same')(res_1_conv6b),(res_1_conv3b)],name='res_1_up7', axis=3) |
|
|
495 |
|
|
|
496 |
res_1_up7 = Dropout(DropP)(res_1_up7) |
|
|
497 |
#add second res_1_output here |
|
|
498 |
res_1_conv7a = Conv2D(128, (kernel_size, kernel_size), activation='relu', padding='same', |
|
|
499 |
kernel_regularizer=regularizers.l2(l2_lambda) )(res_1_up7) |
|
|
500 |
|
|
|
501 |
res_1_conv7a = bn()(res_1_conv7a) |
|
|
502 |
|
|
|
503 |
|
|
|
504 |
res_1_conv7b = Conv2D(128, (kernel_size, kernel_size), activation='relu', padding='same', |
|
|
505 |
kernel_regularizer=regularizers.l2(l2_lambda) )(res_1_conv7a) |
|
|
506 |
|
|
|
507 |
res_1_conv7b = bn()(res_1_conv7b) |
|
|
508 |
|
|
|
509 |
|
|
|
510 |
|
|
|
511 |
res_1_up8 = concatenate([Conv2DTranspose(64,(2, 2), strides=(2, 2), padding='same')(res_1_conv7b),(res_1_conv2b)],name='res_1_up8', axis=3) |
|
|
512 |
|
|
|
513 |
res_1_up8 = Dropout(DropP)(res_1_up8) |
|
|
514 |
#add third outout here |
|
|
515 |
res_1_conv8a = Conv2D(64, (kernel_size, kernel_size), activation='relu', padding='same', |
|
|
516 |
kernel_regularizer=regularizers.l2(l2_lambda) )(res_1_up8) |
|
|
517 |
|
|
|
518 |
res_1_conv8a = bn()(res_1_conv8a) |
|
|
519 |
|
|
|
520 |
|
|
|
521 |
res_1_conv8b = Conv2D(64, (kernel_size, kernel_size), activation='relu', padding='same', |
|
|
522 |
kernel_regularizer=regularizers.l2(l2_lambda) )(res_1_conv8a) |
|
|
523 |
|
|
|
524 |
res_1_conv8b = bn()(res_1_conv8b) |
|
|
525 |
|
|
|
526 |
|
|
|
527 |
res_1_up9 = concatenate([Conv2DTranspose(32,(2, 2), strides=(2, 2), padding='same')(res_1_conv8b), (res_1_conv1b)],name='res_1_up9',axis=3) |
|
|
528 |
|
|
|
529 |
res_1_up9 = Dropout(DropP)(res_1_up9) |
|
|
530 |
|
|
|
531 |
res_1_conv9a = Conv2D(32, (kernel_size, kernel_size), activation='relu', padding='same', |
|
|
532 |
kernel_regularizer=regularizers.l2(l2_lambda) )(res_1_up9) |
|
|
533 |
|
|
|
534 |
res_1_conv9a = bn()(res_1_conv9a) |
|
|
535 |
|
|
|
536 |
|
|
|
537 |
res_1_conv9b = Conv2D(32, (kernel_size, kernel_size), activation='relu', padding='same', |
|
|
538 |
kernel_regularizer=regularizers.l2(l2_lambda) )(res_1_conv9a) |
|
|
539 |
|
|
|
540 |
res_1_conv9b = bn()(res_1_conv9b) |
|
|
541 |
|
|
|
542 |
|
|
|
543 |
|
|
|
544 |
|
|
|
545 |
res_1_up10 = concatenate([Conv2DTranspose(32,(2, 2), strides=(2, 2), padding='same')(res_1_conv9b),(res_1_conv0b)],name='res_1_up10',axis=3) |
|
|
546 |
|
|
|
547 |
res_1_up10 = Dropout(DropP)(res_1_up10) |
|
|
548 |
|
|
|
549 |
|
|
|
550 |
res_1_conv10a = Conv2D(32, (kernel_size, kernel_size), activation='relu', padding='same', |
|
|
551 |
kernel_regularizer=regularizers.l2(l2_lambda) )(res_1_up10) |
|
|
552 |
|
|
|
553 |
res_1_conv10a = bn()(res_1_conv10a) |
|
|
554 |
|
|
|
555 |
|
|
|
556 |
res_1_conv10b = Conv2D(32, (kernel_size, kernel_size), activation='relu', padding='same', |
|
|
557 |
kernel_regularizer=regularizers.l2(l2_lambda) )(res_1_conv10a) |
|
|
558 |
|
|
|
559 |
res_1_conv10b = bn()(res_1_conv10b) |
|
|
560 |
|
|
|
561 |
|
|
|
562 |
res_1_final_op=Conv2D(1, (1, 1), activation='sigmoid',name='res_1_final_op')(res_1_conv10b) |
|
|
563 |
|
|
|
564 |
|
|
|
565 |
model=Model(inputs=[inputs],outputs=[final_op, |
|
|
566 |
xfinal_op, |
|
|
567 |
res_1_final_op, |
|
|
568 |
]) |
|
|
569 |
|
|
|
570 |
model.compile(optimizer=keras.optimizers.Adam(lr=1e-5),loss={'final_op':dice_coef_loss, |
|
|
571 |
'xfinal_op':neg_dice_coef_loss, |
|
|
572 |
'res_1_final_op':'mse'}) |
|
|
573 |
|
|
|
574 |
return model |
|
|
575 |
|
|
|
576 |
#----------------------------------------------------Main--------------------------------------------------# |
|
|
577 |
|
|
|
578 |
|
|
|
579 |
def train_model(data_params, train_params, common_params): |
|
|
580 |
|
|
|
581 |
|
|
|
582 |
training_data_folder = data_params['data_dir'].rstrip('/') |
|
|
583 |
|
|
|
584 |
train_x = training_data_folder + '/' + data_params['train_data_file'] |
|
|
585 |
train_y = training_data_folder + '/' + data_params['train_label_file'] |
|
|
586 |
|
|
|
587 |
model = Comp_U_Net(input_shape=(256,256,1), learn_rate=train_params['learning_rate']) |
|
|
588 |
# print(model.summary()) |
|
|
589 |
|
|
|
590 |
x_train = np.load(train_x) |
|
|
591 |
y_train = np.load(train_y) |
|
|
592 |
|
|
|
593 |
x_train=x_train.reshape(x_train.shape+(1,)) |
|
|
594 |
y_train=y_train.reshape(y_train.shape+(1,)) |
|
|
595 |
|
|
|
596 |
# Log output |
|
|
597 |
print ("Training dwi volume shape: ", x_train.shape) |
|
|
598 |
print ("Training dwi mask volume shape: ", y_train.shape) |
|
|
599 |
|
|
|
600 |
view = train_params['principal_axis'] |
|
|
601 |
|
|
|
602 |
os.makedirs(common_params['log_dir'], exist_ok= True) |
|
|
603 |
csv_logger = CSVLogger(common_params['log_dir'] + '/' + view + '.csv', append=True, separator=';') |
|
|
604 |
|
|
|
605 |
# checkpoint |
|
|
606 |
os.makedirs(common_params['save_model_dir'], exist_ok= True) |
|
|
607 |
filepath = common_params['save_model_dir'] + "/weights-" + view + "-improvement-{epoch:02d}.h5" |
|
|
608 |
checkpoint = ModelCheckpoint(filepath, monitor='val_acc', verbose=1, save_best_only=False, save_weights_only=True) |
|
|
609 |
|
|
|
610 |
# Trains the model for a given number of epochs (iterations on a dataset). |
|
|
611 |
history_callback = model.fit([x_train], |
|
|
612 |
[y_train,y_train,y_train], |
|
|
613 |
validation_split=train_params['validation_split'], |
|
|
614 |
batch_size=train_params['train_batch_size'], |
|
|
615 |
epochs=train_params['num_epochs'], |
|
|
616 |
shuffle=train_params['shuffle_data'], |
|
|
617 |
verbose=1, |
|
|
618 |
callbacks=[csv_logger, checkpoint]) |
|
|
619 |
|
|
|
620 |
import h5py |
|
|
621 |
# serialize model to JSON |
|
|
622 |
model_json = model.to_json() |
|
|
623 |
with open(common_params['save_model_dir'] + "/CompNetBasicModel.json", "w") as json_file: |
|
|
624 |
json_file.write(model_json) |
|
|
625 |
# serialize weights to HDF5 |
|
|
626 |
model.save_weights(common_params['save_model_dir'] + "/" + view + "-compnet_final_weight.h5") |
|
|
627 |
print("Saved model to disk location: ", common_params['save_model_dir']) |