[455abf]: / train.py

Download this file

459 lines (369 with data), 17.0 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
#!/usr/bin/env python3
#
# Note -- this training script is tweaked from the original at:
# https://github.com/pytorch/examples/tree/master/imagenet
#
# For a step-by-step guide to transfer learning with PyTorch, see:
# https://pytorch.org/tutorials/beginner/finetuning_torchvision_models_tutorial.html
#
import argparse
import os
import random
import time
import shutil
import warnings
import datetime
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
import torch.optim
import torch.utils.data
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import torchvision.models as models
from torch.utils.tensorboard import SummaryWriter
from voc import VOCDataset
from nuswide import NUSWideDataset
from reshape import reshape_model
# get the available network architectures
model_names = sorted(name for name in models.__dict__
if name.islower() and not name.startswith("__")
and callable(models.__dict__[name]))
# parse command-line arguments
parser = argparse.ArgumentParser(description='PyTorch Image Classifier Training')
parser.add_argument('data', metavar='DIR',
help='path to dataset')
parser.add_argument('--dataset-type', type=str, default='folder',
choices=['folder', 'nuswide', 'voc'],
help='specify the dataset type (default: folder)')
parser.add_argument('--multi-label', action='store_true',
help='multi-label model (aka image tagging)')
parser.add_argument('--multi-label-threshold', type=float, default=0.5,
help='confidence threshold for counting a prediction as correct')
parser.add_argument('--model-dir', type=str, default='models',
help='path to desired output directory for saving model '
'checkpoints (default: models/)')
parser.add_argument('-a', '--arch', metavar='ARCH', default='resnet18',
choices=model_names,
help='model architecture: ' + ' | '.join(model_names) + ' (default: resnet18)')
parser.add_argument('--resolution', default=224, type=int, metavar='N',
help='input NxN image resolution of model (default: 224x224) '
'note than Inception models should use 299x299')
parser.add_argument('-j', '--workers', default=2, type=int, metavar='N',
help='number of data loading workers (default: 2)')
parser.add_argument('--epochs', default=35, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
help='manual epoch number (useful on restarts)')
parser.add_argument('-b', '--batch-size', default=8, type=int, metavar='N',
help='mini-batch size (default: 8)')
parser.add_argument('--lr', '--learning-rate', default=0.1, type=float,
metavar='LR', help='initial learning rate', dest='lr')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum')
parser.add_argument('--wd', '--weight-decay', default=1e-4, type=float,
metavar='W', help='weight decay (default: 1e-4)',
dest='weight_decay')
parser.add_argument('-p', '--print-freq', default=10, type=int,
metavar='N', help='print frequency (default: 10)')
parser.add_argument('--resume', default='', type=str, metavar='PATH',
help='path to latest checkpoint (default: none)')
parser.add_argument('-e', '--evaluate', dest='evaluate', action='store_true',
help='evaluate model on validation set')
parser.add_argument('--pretrained', dest='pretrained', action='store_true', default=True,
help='use pre-trained model')
parser.add_argument('--seed', default=None, type=int,
help='seed for initializing training')
parser.add_argument('--gpu', default=0, type=int,
help='GPU ID to use (default: 0)')
args = parser.parse_args()
# open tensorboard logger (to model_dir/tensorboard)
tensorboard = SummaryWriter(log_dir=os.path.join(args.model_dir, "tensorboard", f"{datetime.datetime.now().strftime('%Y%m%d_%H%M%S')}"))
print(f"To start tensorboard run: tensorboard --log-dir={os.path.join(args.model_dir, 'tensorboard')}")
# variable for storing the best model accuracy so far
best_accuracy = 0
def main(args):
"""
Load dataset, setup model, and train for N epochs
"""
global best_accuracy
if args.seed is not None:
random.seed(args.seed)
torch.manual_seed(args.seed)
cudnn.deterministic = True
warnings.warn('You have chosen to seed training. '
'This will turn on the CUDNN deterministic setting, '
'which can slow down your training considerably! '
'You may see unexpected behavior when restarting '
'from checkpoints.')
if args.gpu is not None:
print(f"=> using GPU {args.gpu} ({torch.cuda.get_device_name(args.gpu)})")
# setup data transformations
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
train_transforms = transforms.Compose([
transforms.RandomResizedCrop(args.resolution),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize,
])
val_transforms = transforms.Compose([
transforms.Resize(args.resolution),
transforms.CenterCrop(args.resolution),
transforms.ToTensor(),
normalize,
])
# load the dataset
if args.dataset_type == 'folder':
train_dataset = datasets.ImageFolder(os.path.join(args.data, 'train'), train_transforms)
val_dataset = datasets.ImageFolder(os.path.join(args.data, 'val'), val_transforms)
elif args.dataset_type == 'nuswide':
train_dataset = NUSWideDataset(args.data, 'trainval', train_transforms)
val_dataset = NUSWideDataset(args.data, 'test', val_transforms)
elif args.dataset_type == 'voc':
train_dataset = VOCDataset(args.data, 'trainval', train_transforms)
val_dataset = VOCDataset(args.data, 'val', val_transforms)
if (args.dataset_type == 'nuswide' or args.dataset_type == 'voc') and (not args.multi_label):
raise ValueError("nuswide or voc datasets should be run with --multi-label")
print(f"=> dataset classes: {len(train_dataset.classes)} {train_dataset.classes}")
train_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=args.batch_size, shuffle=True,
num_workers=args.workers, pin_memory=True)
val_loader = torch.utils.data.DataLoader(
val_dataset, batch_size=args.batch_size, shuffle=False,
num_workers=args.workers, pin_memory=True)
# create or load the model if using pre-trained (the default)
if args.pretrained:
print(f"=> using pre-trained model '{args.arch}'")
model = models.__dict__[args.arch](pretrained=True)
else:
print(f"=> creating model '{args.arch}'")
model = models.__dict__[args.arch]()
# reshape the model for the number of classes in the dataset
model = reshape_model(model, args.arch, len(train_dataset.classes))
# define loss function (criterion) and optimizer
if args.multi_label:
criterion = nn.BCEWithLogitsLoss()
else:
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), args.lr,
momentum=args.momentum,
weight_decay=args.weight_decay)
# transfer the model to the GPU that it should be run on
if args.gpu is not None:
torch.cuda.set_device(args.gpu)
model = model.cuda(args.gpu)
criterion = criterion.cuda(args.gpu)
# optionally resume from a checkpoint
if args.resume:
if os.path.isfile(args.resume):
print(f"=> loading checkpoint '{args.resume}'")
checkpoint = torch.load(args.resume)
args.start_epoch = checkpoint['epoch'] + 1
best_accuracy = checkpoint['best_accuracy']
if args.gpu is not None:
best_accuracy = best_accuracy.to(args.gpu) # best_accuracy may be from a checkpoint from a different GPU
model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
print(f"=> loaded checkpoint '{args.resume}' (epoch {checkpoint['epoch']})")
else:
print(f"=> no checkpoint found at '{args.resume}'")
cudnn.benchmark = True
# if in evaluation mode, only run validation
if args.evaluate:
validate(val_loader, model, criterion, 0)
return
# train for the specified number of epochs
for epoch in range(args.start_epoch, args.epochs):
# decay the learning rate
adjust_learning_rate(optimizer, epoch)
# train for one epoch
train_loss, train_acc = train(train_loader, model, criterion, optimizer, epoch)
# evaluate on validation set
val_loss, val_acc = validate(val_loader, model, criterion, epoch)
# remember best acc@1 and save checkpoint
is_best = val_acc > best_accuracy
best_accuracy = max(val_acc, best_accuracy)
print(f"=> Epoch {epoch}")
print(f" * Train Loss {train_loss:.4e}")
print(f" * Train Accuracy {train_acc:.4f}")
print(f" * Val Loss {val_loss:.4e}")
print(f" * Val Accuracy {val_acc:.4f}{'*' if is_best else ''}")
save_checkpoint({
'epoch': epoch,
'arch': args.arch,
'resolution': args.resolution,
'classes': train_dataset.classes,
'num_classes': len(train_dataset.classes),
'multi_label': args.multi_label,
'state_dict': model.state_dict(),
'accuracy': {'train': train_acc, 'val': val_acc},
'loss' : {'train': train_loss, 'val': val_loss},
'optimizer' : optimizer.state_dict(),
}, is_best)
def train(train_loader, model, criterion, optimizer, epoch):
"""
Train one epoch over the dataset
"""
batch_time = AverageMeter('Time', ':6.3f')
data_time = AverageMeter('Data', ':6.3f')
losses = AverageMeter('Loss', ':.4e')
acc = AverageMeter('Accuracy', ':7.3f')
progress = ProgressMeter(
len(train_loader),
[batch_time, data_time, losses, acc],
prefix=f"Epoch: [{epoch}]")
# switch to train mode
model.train()
# get the start time
epoch_start = time.time()
end = epoch_start
# train over each image batch from the dataset
for i, (images, target) in enumerate(train_loader):
# measure data loading time
data_time.update(time.time() - end)
if args.gpu is not None:
images = images.cuda(args.gpu, non_blocking=True)
target = target.cuda(args.gpu, non_blocking=True)
# compute output
output = model(images)
loss = criterion(output, target)
# record loss and measure accuracy
losses.update(loss.item(), images.size(0))
acc.update(accuracy(output, target), images.size(0))
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0 or i == len(train_loader)-1:
progress.display(i)
print(f"Epoch: [{epoch}] completed, elapsed time {time.time() - epoch_start:6.3f} seconds")
tensorboard.add_scalar('Loss/train', losses.avg, epoch)
tensorboard.add_scalar('Accuracy/train', acc.avg, epoch)
return losses.avg, acc.avg
def validate(val_loader, model, criterion, epoch):
"""
Measure model performance across the val dataset
"""
batch_time = AverageMeter('Time', ':6.3f')
losses = AverageMeter('Loss', ':.4e')
acc = AverageMeter('Accuracy', ':7.3f')
progress = ProgressMeter(
len(val_loader),
[batch_time, losses, acc],
prefix='Val: ')
# switch to evaluate mode
model.eval()
with torch.no_grad():
end = time.time()
for i, (images, target) in enumerate(val_loader):
if args.gpu is not None:
images = images.cuda(args.gpu, non_blocking=True)
target = target.cuda(args.gpu, non_blocking=True)
# compute output
output = model(images)
loss = criterion(output, target)
# record loss and measure accuracy
losses.update(loss.item(), images.size(0))
acc.update(accuracy(output, target), images.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0 or i == len(val_loader)-1:
progress.display(i)
tensorboard.add_scalar('Loss/val', losses.avg, epoch)
tensorboard.add_scalar('Accuracy/val', acc.avg, epoch)
return losses.avg, acc.avg
def save_checkpoint(state, is_best, filename='checkpoint.pth.tar', best_filename='model_best.pth.tar', labels_filename='labels.txt'):
"""
Save a model checkpoint file, along with the best-performing model if applicable
"""
if args.model_dir:
model_dir = os.path.expanduser(args.model_dir)
if not os.path.exists(model_dir):
os.mkdir(model_dir)
filename = os.path.join(model_dir, filename)
best_filename = os.path.join(model_dir, best_filename)
labels_filename = os.path.join(model_dir, labels_filename)
# save the checkpoint
torch.save(state, filename)
# earmark the best checkpoint
if is_best:
shutil.copyfile(filename, best_filename)
print(f"saved best model to: {best_filename}")
else:
print(f"saved checkpoint to: {filename}")
# save labels.txt on the first epoch
if state['epoch'] == 0:
with open(labels_filename, 'w') as file:
for label in state['classes']:
file.write(f"{label}\n")
print(f"saved class labels to: {labels_filename}")
def adjust_learning_rate(optimizer, epoch):
"""
Sets the learning rate to the initial LR decayed by 10 every 30 epochs
"""
lr = args.lr * (0.1 ** (epoch // 30))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def accuracy(output, target):
"""
Computes the accuracy of predictions vs groundtruth
"""
with torch.no_grad():
if args.multi_label:
output = F.sigmoid(output)
preds = ((output >= args.multi_label_threshold) == target.bool()) # https://medium.com/@yrodriguezmd/tackling-the-accuracy-multi-metric-9e2356f62513
# https://stackoverflow.com/a/61585551
#output[output >= args.multi_label_threshold] = 1
#output[output < args.multi_label_threshold] = 0
#preds = (output == target)
else:
output = F.softmax(output, dim=-1)
_, preds = torch.max(output, dim=-1)
preds = (preds == target)
return preds.float().mean().cpu().item() * 100.0
class AverageMeter(object):
"""
Computes and stores the average and current value
"""
def __init__(self, name, fmt=':f'):
self.name = name
self.fmt = fmt
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def __str__(self):
fmtstr = '{name} {val' + self.fmt + '} ({avg' + self.fmt + '})'
return fmtstr.format(**self.__dict__)
class ProgressMeter(object):
"""
Progress metering
"""
def __init__(self, num_batches, meters, prefix=""):
self.batch_fmtstr = self._get_batch_fmtstr(num_batches)
self.meters = meters
self.prefix = prefix
def display(self, batch):
entries = [self.prefix + self.batch_fmtstr.format(batch)]
entries += [str(meter) for meter in self.meters]
print(' '.join(entries))
def _get_batch_fmtstr(self, num_batches):
num_digits = len(str(num_batches // 1))
fmt = '{:' + str(num_digits) + 'd}'
return '[' + fmt + '/' + fmt.format(num_batches) + ']'
if __name__ == '__main__':
main(args)