--- a +++ b/setup.py @@ -0,0 +1,50 @@ +from setuptools import setup, find_namespace_packages + +setup(name='nnunet', + packages=find_namespace_packages(include=["nnunet", "nnunet.*"]), + version='1.6.6', + description='nnU-Net. Framework for out-of-the box biomedical image segmentation.', + url='https://github.com/MIC-DKFZ/nnUNet', + author='Division of Medical Image Computing, German Cancer Research Center', + author_email='f.isensee@dkfz-heidelberg.de', + license='Apache License Version 2.0, January 2004', + install_requires=[ + "torch>=1.6.0a", + "tqdm", + "dicom2nifti", + "scikit-image>=0.14", + "medpy", + "scipy", + "batchgenerators==0.21", + "numpy", + "sklearn", + "SimpleITK", + "pandas", + "requests", + "nibabel", 'tifffile','axial_attention' + ], + entry_points={ + 'console_scripts': [ + 'nnUNet_convert_decathlon_task = nnunet.experiment_planning.nnUNet_convert_decathlon_task:main', + 'nnUNet_plan_and_preprocess = nnunet.experiment_planning.nnUNet_plan_and_preprocess:main', + 'nnUNet_train = nnunet.run.run_training:main', + 'nnUNet_train_DP = nnunet.run.run_training_DP:main', + 'nnUNet_train_DDP = nnunet.run.run_training_DDP:main', + 'nnUNet_predict = nnunet.inference.predict_simple:main', + 'nnUNet_ensemble = nnunet.inference.ensemble_predictions:main', + 'nnUNet_find_best_configuration = nnunet.evaluation.model_selection.figure_out_what_to_submit:main', + 'nnUNet_print_available_pretrained_models = nnunet.inference.pretrained_models.download_pretrained_model:print_available_pretrained_models', + 'nnUNet_print_pretrained_model_info = nnunet.inference.pretrained_models.download_pretrained_model:print_pretrained_model_requirements', + 'nnUNet_download_pretrained_model = nnunet.inference.pretrained_models.download_pretrained_model:download_by_name', + 'nnUNet_download_pretrained_model_by_url = nnunet.inference.pretrained_models.download_pretrained_model:download_by_url', + 'nnUNet_determine_postprocessing = nnunet.postprocessing.consolidate_postprocessing_simple:main', + 'nnUNet_export_model_to_zip = nnunet.inference.pretrained_models.collect_pretrained_models:export_entry_point', + 'nnUNet_install_pretrained_model_from_zip = nnunet.inference.pretrained_models.download_pretrained_model:install_from_zip_entry_point', + 'nnUNet_change_trainer_class = nnunet.inference.change_trainer:main', + 'nnUNet_evaluate_folder = nnunet.evaluation.evaluator:nnunet_evaluate_folder', + 'nnUNet_plot_task_pngs = nnunet.utilities.overlay_plots:entry_point_generate_overlay', + ], + }, + keywords=['deep learning', 'image segmentation', 'medical image analysis', + 'medical image segmentation', 'nnU-Net', 'nnunet'] + )