a b/setup.py
1
from setuptools import setup, find_namespace_packages
2
3
setup(name='nnunet',
4
      packages=find_namespace_packages(include=["nnunet", "nnunet.*"]),
5
      version='1.6.6',
6
      description='nnU-Net. Framework for out-of-the box biomedical image segmentation.',
7
      url='https://github.com/MIC-DKFZ/nnUNet',
8
      author='Division of Medical Image Computing, German Cancer Research Center',
9
      author_email='f.isensee@dkfz-heidelberg.de',
10
      license='Apache License Version 2.0, January 2004',
11
      install_requires=[
12
            "torch>=1.6.0a",
13
            "tqdm",
14
            "dicom2nifti",
15
            "scikit-image>=0.14",
16
            "medpy",
17
            "scipy",
18
            "batchgenerators==0.21",
19
            "numpy",
20
            "sklearn",
21
            "SimpleITK",
22
            "pandas",
23
            "requests",
24
            "nibabel", 'tifffile','axial_attention'
25
      ],
26
      entry_points={
27
          'console_scripts': [
28
              'nnUNet_convert_decathlon_task = nnunet.experiment_planning.nnUNet_convert_decathlon_task:main',
29
              'nnUNet_plan_and_preprocess = nnunet.experiment_planning.nnUNet_plan_and_preprocess:main',
30
              'nnUNet_train = nnunet.run.run_training:main',
31
              'nnUNet_train_DP = nnunet.run.run_training_DP:main',
32
              'nnUNet_train_DDP = nnunet.run.run_training_DDP:main',
33
              'nnUNet_predict = nnunet.inference.predict_simple:main',
34
              'nnUNet_ensemble = nnunet.inference.ensemble_predictions:main',
35
              'nnUNet_find_best_configuration = nnunet.evaluation.model_selection.figure_out_what_to_submit:main',
36
              'nnUNet_print_available_pretrained_models = nnunet.inference.pretrained_models.download_pretrained_model:print_available_pretrained_models',
37
              'nnUNet_print_pretrained_model_info = nnunet.inference.pretrained_models.download_pretrained_model:print_pretrained_model_requirements',
38
              'nnUNet_download_pretrained_model = nnunet.inference.pretrained_models.download_pretrained_model:download_by_name',
39
              'nnUNet_download_pretrained_model_by_url = nnunet.inference.pretrained_models.download_pretrained_model:download_by_url',
40
              'nnUNet_determine_postprocessing = nnunet.postprocessing.consolidate_postprocessing_simple:main',
41
              'nnUNet_export_model_to_zip = nnunet.inference.pretrained_models.collect_pretrained_models:export_entry_point',
42
              'nnUNet_install_pretrained_model_from_zip = nnunet.inference.pretrained_models.download_pretrained_model:install_from_zip_entry_point',
43
              'nnUNet_change_trainer_class = nnunet.inference.change_trainer:main',
44
              'nnUNet_evaluate_folder = nnunet.evaluation.evaluator:nnunet_evaluate_folder',
45
              'nnUNet_plot_task_pngs = nnunet.utilities.overlay_plots:entry_point_generate_overlay',
46
          ],
47
      },
48
      keywords=['deep learning', 'image segmentation', 'medical image analysis',
49
                'medical image segmentation', 'nnU-Net', 'nnunet']
50
      )