|
a |
|
b/setup.py |
|
|
1 |
from setuptools import setup, find_namespace_packages |
|
|
2 |
|
|
|
3 |
setup(name='nnunet', |
|
|
4 |
packages=find_namespace_packages(include=["nnunet", "nnunet.*"]), |
|
|
5 |
version='1.6.6', |
|
|
6 |
description='nnU-Net. Framework for out-of-the box biomedical image segmentation.', |
|
|
7 |
url='https://github.com/MIC-DKFZ/nnUNet', |
|
|
8 |
author='Division of Medical Image Computing, German Cancer Research Center', |
|
|
9 |
author_email='f.isensee@dkfz-heidelberg.de', |
|
|
10 |
license='Apache License Version 2.0, January 2004', |
|
|
11 |
install_requires=[ |
|
|
12 |
"torch>=1.6.0a", |
|
|
13 |
"tqdm", |
|
|
14 |
"dicom2nifti", |
|
|
15 |
"scikit-image>=0.14", |
|
|
16 |
"medpy", |
|
|
17 |
"scipy", |
|
|
18 |
"batchgenerators==0.21", |
|
|
19 |
"numpy", |
|
|
20 |
"sklearn", |
|
|
21 |
"SimpleITK", |
|
|
22 |
"pandas", |
|
|
23 |
"requests", |
|
|
24 |
"nibabel", 'tifffile','axial_attention' |
|
|
25 |
], |
|
|
26 |
entry_points={ |
|
|
27 |
'console_scripts': [ |
|
|
28 |
'nnUNet_convert_decathlon_task = nnunet.experiment_planning.nnUNet_convert_decathlon_task:main', |
|
|
29 |
'nnUNet_plan_and_preprocess = nnunet.experiment_planning.nnUNet_plan_and_preprocess:main', |
|
|
30 |
'nnUNet_train = nnunet.run.run_training:main', |
|
|
31 |
'nnUNet_train_DP = nnunet.run.run_training_DP:main', |
|
|
32 |
'nnUNet_train_DDP = nnunet.run.run_training_DDP:main', |
|
|
33 |
'nnUNet_predict = nnunet.inference.predict_simple:main', |
|
|
34 |
'nnUNet_ensemble = nnunet.inference.ensemble_predictions:main', |
|
|
35 |
'nnUNet_find_best_configuration = nnunet.evaluation.model_selection.figure_out_what_to_submit:main', |
|
|
36 |
'nnUNet_print_available_pretrained_models = nnunet.inference.pretrained_models.download_pretrained_model:print_available_pretrained_models', |
|
|
37 |
'nnUNet_print_pretrained_model_info = nnunet.inference.pretrained_models.download_pretrained_model:print_pretrained_model_requirements', |
|
|
38 |
'nnUNet_download_pretrained_model = nnunet.inference.pretrained_models.download_pretrained_model:download_by_name', |
|
|
39 |
'nnUNet_download_pretrained_model_by_url = nnunet.inference.pretrained_models.download_pretrained_model:download_by_url', |
|
|
40 |
'nnUNet_determine_postprocessing = nnunet.postprocessing.consolidate_postprocessing_simple:main', |
|
|
41 |
'nnUNet_export_model_to_zip = nnunet.inference.pretrained_models.collect_pretrained_models:export_entry_point', |
|
|
42 |
'nnUNet_install_pretrained_model_from_zip = nnunet.inference.pretrained_models.download_pretrained_model:install_from_zip_entry_point', |
|
|
43 |
'nnUNet_change_trainer_class = nnunet.inference.change_trainer:main', |
|
|
44 |
'nnUNet_evaluate_folder = nnunet.evaluation.evaluator:nnunet_evaluate_folder', |
|
|
45 |
'nnUNet_plot_task_pngs = nnunet.utilities.overlay_plots:entry_point_generate_overlay', |
|
|
46 |
], |
|
|
47 |
}, |
|
|
48 |
keywords=['deep learning', 'image segmentation', 'medical image analysis', |
|
|
49 |
'medical image segmentation', 'nnU-Net', 'nnunet'] |
|
|
50 |
) |