[4be099]: / nnunet / preprocessing / cropping.py

Download this file

217 lines (175 with data), 8.6 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
# Copyright 2020 Division of Medical Image Computing, German Cancer Research Center (DKFZ), Heidelberg, Germany
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import SimpleITK as sitk
import numpy as np
import shutil
from batchgenerators.utilities.file_and_folder_operations import *
from multiprocessing import Pool
from collections import OrderedDict
def create_nonzero_mask(data):
from scipy.ndimage import binary_fill_holes
assert len(data.shape) == 4 or len(data.shape) == 3, "data must have shape (C, X, Y, Z) or shape (C, X, Y)"
nonzero_mask = np.zeros(data.shape[1:], dtype=bool)
for c in range(data.shape[0]):
this_mask = data[c] != 0
nonzero_mask = nonzero_mask | this_mask
nonzero_mask = binary_fill_holes(nonzero_mask)
return nonzero_mask
def get_bbox_from_mask(mask, outside_value=0):
mask_voxel_coords = np.where(mask != outside_value)
minzidx = int(np.min(mask_voxel_coords[0]))
maxzidx = int(np.max(mask_voxel_coords[0])) + 1
minxidx = int(np.min(mask_voxel_coords[1]))
maxxidx = int(np.max(mask_voxel_coords[1])) + 1
minyidx = int(np.min(mask_voxel_coords[2]))
maxyidx = int(np.max(mask_voxel_coords[2])) + 1
return [[minzidx, maxzidx], [minxidx, maxxidx], [minyidx, maxyidx]]
def crop_to_bbox(image, bbox):
assert len(image.shape) == 3, "only supports 3d images"
resizer = (slice(bbox[0][0], bbox[0][1]), slice(bbox[1][0], bbox[1][1]), slice(bbox[2][0], bbox[2][1]))
return image[resizer]
def get_case_identifier(case):
case_identifier = case[0].split("/")[-1].split(".nii.gz")[0][:-5]
return case_identifier
def get_case_identifier_from_npz(case):
case_identifier = case.split("/")[-1][:-4]
return case_identifier
def load_case_from_list_of_files(data_files, seg_file=None):
assert isinstance(data_files, list) or isinstance(data_files, tuple), "case must be either a list or a tuple"
properties = OrderedDict()
data_itk = [sitk.ReadImage(f) for f in data_files]
properties["original_size_of_raw_data"] = np.array(data_itk[0].GetSize())[[2, 1, 0]]
properties["original_spacing"] = np.array(data_itk[0].GetSpacing())[[2, 1, 0]]
properties["list_of_data_files"] = data_files
properties["seg_file"] = seg_file
properties["itk_origin"] = data_itk[0].GetOrigin()
properties["itk_spacing"] = data_itk[0].GetSpacing()
properties["itk_direction"] = data_itk[0].GetDirection()
data_npy = np.vstack([sitk.GetArrayFromImage(d)[None] for d in data_itk])
if seg_file is not None:
seg_itk = sitk.ReadImage(seg_file)
seg_npy = sitk.GetArrayFromImage(seg_itk)[None].astype(np.float32)
else:
seg_npy = None
return data_npy.astype(np.float32), seg_npy, properties
def crop_to_nonzero(data, seg=None, nonzero_label=-1):
"""
:param data:
:param seg:
:param nonzero_label: this will be written into the segmentation map
:return:
"""
nonzero_mask = create_nonzero_mask(data)
bbox = get_bbox_from_mask(nonzero_mask, 0)
cropped_data = []
for c in range(data.shape[0]):
cropped = crop_to_bbox(data[c], bbox)
cropped_data.append(cropped[None])
data = np.vstack(cropped_data)
if seg is not None:
cropped_seg = []
for c in range(seg.shape[0]):
cropped = crop_to_bbox(seg[c], bbox)
cropped_seg.append(cropped[None])
seg = np.vstack(cropped_seg)
nonzero_mask = crop_to_bbox(nonzero_mask, bbox)[None]
if seg is not None:
seg[(seg == 0) & (nonzero_mask == 0)] = nonzero_label
else:
nonzero_mask = nonzero_mask.astype(int)
nonzero_mask[nonzero_mask == 0] = nonzero_label
nonzero_mask[nonzero_mask > 0] = 0
seg = nonzero_mask
return data, seg, bbox
def get_patient_identifiers_from_cropped_files(folder):
return [i.split("/")[-1][:-4] for i in subfiles(folder, join=True, suffix=".npz")]
class ImageCropper(object):
def __init__(self, num_threads, output_folder=None):
"""
This one finds a mask of nonzero elements (must be nonzero in all modalities) and crops the image to that mask.
In the case of BRaTS and ISLES data this results in a significant reduction in image size
:param num_threads:
:param output_folder: whete to store the cropped data
:param list_of_files:
"""
self.output_folder = output_folder
self.num_threads = num_threads
if self.output_folder is not None:
maybe_mkdir_p(self.output_folder)
@staticmethod
def crop(data, properties, seg=None):
shape_before = data.shape
data, seg, bbox = crop_to_nonzero(data, seg, nonzero_label=-1)
shape_after = data.shape
print("before crop:", shape_before, "after crop:", shape_after, "spacing:",
np.array(properties["original_spacing"]), "\n")
properties["crop_bbox"] = bbox
properties['classes'] = np.unique(seg)
seg[seg < -1] = 0
properties["size_after_cropping"] = data[0].shape
return data, seg, properties
@staticmethod
def crop_from_list_of_files(data_files, seg_file=None):
data, seg, properties = load_case_from_list_of_files(data_files, seg_file)
return ImageCropper.crop(data, properties, seg)
def load_crop_save(self, case, case_identifier, overwrite_existing=False):
try:
print(case_identifier)
if overwrite_existing \
or (not os.path.isfile(os.path.join(self.output_folder, "%s.npz" % case_identifier))
or not os.path.isfile(os.path.join(self.output_folder, "%s.pkl" % case_identifier))):
data, seg, properties = self.crop_from_list_of_files(case[:-1], case[-1])
all_data = np.vstack((data, seg))
np.savez_compressed(os.path.join(self.output_folder, "%s.npz" % case_identifier), data=all_data)
with open(os.path.join(self.output_folder, "%s.pkl" % case_identifier), 'wb') as f:
pickle.dump(properties, f)
except Exception as e:
print("Exception in", case_identifier, ":")
print(e)
raise e
def get_list_of_cropped_files(self):
return subfiles(self.output_folder, join=True, suffix=".npz")
def get_patient_identifiers_from_cropped_files(self):
return [i.split("/")[-1][:-4] for i in self.get_list_of_cropped_files()]
def run_cropping(self, list_of_files, overwrite_existing=False, output_folder=None):
"""
also copied ground truth nifti segmentation into the preprocessed folder so that we can use them for evaluation
on the cluster
:param list_of_files: list of list of files [[PATIENTID_TIMESTEP_0000.nii.gz], [PATIENTID_TIMESTEP_0000.nii.gz]]
:param overwrite_existing:
:param output_folder:
:return:
"""
if output_folder is not None:
self.output_folder = output_folder
output_folder_gt = os.path.join(self.output_folder, "gt_segmentations")
maybe_mkdir_p(output_folder_gt)
for j, case in enumerate(list_of_files):
if case[-1] is not None:
shutil.copy(case[-1], output_folder_gt)
list_of_args = []
for j, case in enumerate(list_of_files):
case_identifier = get_case_identifier(case)
list_of_args.append((case, case_identifier, overwrite_existing))
p = Pool(self.num_threads)
p.starmap(self.load_crop_save, list_of_args)
p.close()
p.join()
def load_properties(self, case_identifier):
with open(os.path.join(self.output_folder, "%s.pkl" % case_identifier), 'rb') as f:
properties = pickle.load(f)
return properties
def save_properties(self, case_identifier, properties):
with open(os.path.join(self.output_folder, "%s.pkl" % case_identifier), 'wb') as f:
pickle.dump(properties, f)