[602ab8]: / src / segment.py

Download this file

141 lines (107 with data), 4.3 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
from __future__ import print_function
import os
import numpy as np
import nibabel as nib
import skfuzzy as fuzz
from sklearn.cluster import KMeans
from multiprocessing import Pool, cpu_count
def create_dir(path):
if not os.path.isdir(path):
os.makedirs(path)
return
def load_nii(path):
nii = nib.load(path)
return nii.get_data(), nii.get_affine()
def save_nii(data, path, affine):
nib.save(nib.Nifti1Image(data, affine), path)
return
def extract_features(data):
x_idx, y_idx, z_idx = np.where(data > 0)
features = []
for x, y, z in zip(x_idx, y_idx, z_idx):
features.append([data[x, y, z], x, y, z])
return np.array(features)
def kmeans_cluster(data, n_clusters):
features = extract_features(data)
intensities = features[..., 0].reshape((-1, 1))
kmeans_model = KMeans(n_clusters=n_clusters, init="k-means++",
precompute_distances=True, verbose=0,
random_state=7, n_jobs=1,
max_iter=1000, tol=1e-6).fit(intensities)
labels = np.zeros(data.shape)
for l, f in zip(kmeans_model.labels_, features):
labels[int(f[1]), int(f[2]), int(f[3])] = l + 1
return labels
def fuzzy_cmeans_cluster(data, n_clusters):
features = extract_features(data)
intensities = features[..., 0].reshape((1, -1))
cntr, u, u0, d, jm, p, fpc = fuzz.cluster.cmeans(
intensities, n_clusters, 2, error=1e-6,
maxiter=1000, init=None, seed=7)
labels_ = np.argmax(u, axis=0)
labels = np.zeros(data.shape)
for l, f in zip(labels_, features):
labels[int(f[1]), int(f[2]), int(f[3])] = l + 1
return labels
def get_target_label(labels, data):
labels_set = np.unique(labels)
mean_intensities = []
for label in labels_set[1:]:
label_data = data[np.where(labels == label)]
mean_intensities.append(np.mean(label_data))
target_intensity = np.median(mean_intensities) # GM
# target_intensity = np.max(mean_intensities) # WM
# target_intensity = np.min(mean_intensities) # CSF
target_label = mean_intensities.index(target_intensity) + 1
return target_label
def unwarp_segment(arg, **kwarg):
return segment(*arg, **kwarg)
def segment(src_path, dst_path, labels_path=None, method="km"):
print("Segment on: ", src_path)
try:
data, affine = load_nii(src_path)
n_clusters = 3
if method == "km":
# Method 1 - KMeans
labels = kmeans_cluster(data, n_clusters)
elif method == "fcm":
# Method 2 - Fuzzy CMeans
labels = fuzzy_cmeans_cluster(data, n_clusters)
target = get_target_label(labels, data)
gm_mask = np.copy(labels).astype(np.float32)
gm_mask[np.where(gm_mask != target)] = 0.333
gm_mask[np.where(gm_mask == target)] = 1.
data = data.astype(np.float32)
gm = np.multiply(data, gm_mask)
save_nii(labels, labels_path, affine)
save_nii(gm, dst_path, affine)
except RuntimeError:
print("\tFalid on: ", src_path)
return
parent_dir = os.path.dirname(os.getcwd())
data_dir = os.path.join(parent_dir, "data")
data_src_dir = os.path.join(data_dir, "ADNIEnhance")
data_dst_dir = os.path.join(data_dir, "ADNIKMSegment")
data_labels = ["AD", "NC"]
create_dir(data_dst_dir)
data_src_paths, data_dst_paths, labels_paths = [], [], []
for label in data_labels:
src_label_dir = os.path.join(data_src_dir, label)
dst_label_dir = os.path.join(data_dst_dir, label)
create_dir(dst_label_dir)
for subject in os.listdir(src_label_dir):
data_src_paths.append(os.path.join(src_label_dir, subject))
subj_name = subject.split(".")[0]
dst_subj_dir = os.path.join(dst_label_dir, subj_name)
create_dir(dst_subj_dir)
data_dst_paths.append(os.path.join(dst_subj_dir, subject))
labels_paths.append(os.path.join(dst_subj_dir, subj_name + "_labels.nii.gz"))
method = "km" # "fcm" or "km"
# Test
# segment(data_src_paths[0], data_dst_paths[0], labels_paths[0])
# Multi-processing
subj_num = len(data_src_paths)
paras = zip(data_src_paths, data_dst_paths,
labels_paths, [method] * subj_num)
pool = Pool(processes=cpu_count())
pool.map(unwarp_segment, paras)