from __future__ import print_function
import os
from multiprocessing import Pool, cpu_count
from nipype.interfaces.ants.segmentation import N4BiasFieldCorrection
def create_dir(path):
if not os.path.isdir(path):
os.makedirs(path)
def unwarp_bias_field_correction(arg, **kwarg):
return bias_field_correction(*arg, **kwarg)
def bias_field_correction(src_path, dst_path):
print("N4ITK on: ", src_path)
try:
n4 = N4BiasFieldCorrection()
n4.inputs.input_image = src_path
n4.inputs.output_image = dst_path
n4.inputs.dimension = 3
n4.inputs.n_iterations = [100, 100, 60, 40]
n4.inputs.shrink_factor = 3
n4.inputs.convergence_threshold = 1e-4
n4.inputs.bspline_fitting_distance = 300
n4.run()
except RuntimeError:
print("\tFailed on: ", src_path)
return
parent_dir = os.path.dirname(os.getcwd())
data_dir = os.path.join(parent_dir, "data")
data_src_dir = os.path.join(data_dir, "ADNIBrain")
data_dst_dir = os.path.join(data_dir, "ADNIDenoise")
data_labels = ["AD", "NC"]
create_dir(data_dst_dir)
data_src_paths, data_dst_paths = [], []
for label in data_labels:
src_label_dir = os.path.join(data_src_dir, label)
dst_label_dir = os.path.join(data_dst_dir, label)
create_dir(dst_label_dir)
for subject in os.listdir(src_label_dir):
data_src_paths.append(os.path.join(src_label_dir, subject))
data_dst_paths.append(os.path.join(dst_label_dir, subject))
# Test
# bias_field_correction(data_src_paths[0], data_dst_paths[0])
# Multi-processing
paras = zip(data_src_paths, data_dst_paths)
pool = Pool(processes=cpu_count())
pool.map(unwarp_bias_field_correction, paras)