Preprocessing On Brain Volume by FSL and ANTs

Information of Sample Image:

- The image is one of cases in ADNI1 dataset.
- This is an AD sample.
- Volume shape: [166, 256, 256].

- The software used to display image is **MRIcron**.

sample.nii.gz

Steps of Preprocessing

- 1. Reorientation to Standard Space
- 2. Registration to Template
- 3. Skull-skipping
- 4. Bias Field Correction
- 5. Tissue Segmentation

Notes

In this document,

 The source directory of sample is: Desktop/BrainPrep/volumes/

The name of sample file is: **sample.nii.gz**

2. This demo is performed in Ubuntu system. Commands used to do preprocessing in macOS is a bit different with in Ubuntu.
I will state the difference in some steps by the symbol ★.

1. Reorientation to Standard Space

1.1 Change Working Directory to Source Directory

In **terminal**, input command **cd Desktop/BrainPrep/volumes**, click **Enter**.

wser1@s2152: ~/Desktop/BrainPrep/volumes
user1@s2152:~\$ cd Desktop/BrainPrep/volumes/
user1@s2152:~/Desktop/BrainPrep/volumes\$

1.2 Do Reorientation

Input command **fsIreorient2std sample.nii.gz ro.nii.gz**, click **Enter**.

wser1@s2152:~/Desktop/BrainPrep/volumes
user1@s2152:~\$ cd Desktop/BrainPrep/volumes/
user1@s2152:~/Desktop/BrainPrep/volumes\$ fslreorient2std sample.nii.gz ro.nii.gz
user1@s2152:~/Desktop/BrainPrep/volumes\$

1. Reorientation to Standard Space

1.3 Check Output

You can find the output file in **Desktop/BrainPrep/volumes** with name **ro.nii.gz**. Use **MRIcron** to display the reorientated image. It should look same as the original image. Because **MRIcron** can adjust the input image and display it in standard space.

sample.nii.gz

2.1 Start Software

In terminal, input command:

for **Ubuntu** is: **Flirt**, for **macOS** is: **Flirt_gui**, click **Enter**.

😕 🚍 💷 user1@s2152: ~/Desktop/BrainPrep/volumes

user1@s2152:~/Desktop/BrainPrep/volumes\$ Flirt

😣 🗇 🗊 🛛 FLIRT - FMRIB's Linear Image Registration Tool - v6.0		
Mode Input image -> Reference image		
Reference image /usr/local/fsl/data/standard/MNI152_T1_2mm_brain 🔂		
Model/DOF (input to ref) Affine (12 parameter model) 💳		
Input image		
Output image		
Number of secondary images to apply transform to 0		
Go Exit Help Utils		

2.2 Select Template

Click button in red box, select MNI152_T1_1mm.nii.gz, click Ok.

😣 🗇 💷 FLIRT - FMRIB's Linear Image Registration Tool - v6.0	😣 🖨 🗊 Select
Mode Input image -> Reference image	Filter: /usr/local/fsl/data/standard/IMAGE
Reference image /usr/local/fsl/data/standard/MNI152_T1_2mm_brain	Directories:
Model/DOF (input to ref) Affine (12 parameter model) —	bianca tissuepriors FMRIB58_FA_1mm.nii.gz Fornix_FMRIB_FA1mm.ni.
Input image	MNI152_T1_0.5mm.nii.gz
	MNI152_T1_1mm_Hipp_ma: MNI152_T1_1mm_brain.n. MNI152_T1_1mm_brain.m:
Number of secondary images to apply transform to 0	MNI152_T1_1mm_brain_m
> Advanced Options	Selection: /usr/local/fsl/data/standard/MNI152_T1_1mm.nii.
Go Exit Help Utils	Ok Filter Cancel

2.3 Set Input Image Path

Click button in red box, select **ro.nii.gz** generated in step 1, click **Ok**.

See Stirt - FMRIB's Linear Image Registration Tool - v6.0	🛞 🖨 🗊 Select
Mode Input image -> Reference image Reference image /usr/local/fsl/data/standard/MNI152_T1_1mm.nii.gz 3 Model/DOF (input to ref) Affine (12 parameter model) Input image	Filter: /home/user1/Desktop/BrainPrep/volumes/IMAGE Directories: Files: Files: F
Number of secondary images to apply transform to 0 > Advanced Options Go Exit Help Utils	Selection://home/user1/Desktop/BrainPrep/volumes/ro.nii.gz

2.4 Set Output Image Path

Copy input path to "Output Image" box, change the output file name to **reg.nii.gz**.

😣 🗩 🗊 FLIRT - FMRIB's Linear Image Registration Tool - v6.0
Mode Input image -> Reference image
Reference image //usr/local/fsl/data/standard/MNI152_T1_1mm.nii.gz 🔄 Model/DOF (input to ref) Affine (12 parameter model) 💻
Input image /home/user1/Desktop/BrainPrep/volumes/ro.nii.gz Output image /home/user1/Desktop/BrainPrep/volumes/reg.nii.gz
Number of secondary images to apply transform to 0
> Advanced Options
Go Exit Help Utils

2.5 Set Advanced Options

Click the triangle button in red box.

😣 🖻 🗉 FLIRT - FMRIB's Linear Image Registration Tool - v6.0		
Mode Input image -> Reference image		
Model/DOF (input to ref) Affine (12 parameter model)		
Input image /home/user1/Desktop/BrainPrep/volumes/ro.nii.gz Output image /home/user1/Desktop/BrainPrep/volumes/reg.nii.gz		
Number of secondary images to apply transform to 0		
Go Exit Help Utils		

2.5.1 Change Search Option

In **Search** tab, click button in red box and select the first option **Already virtually aligned (no search)**.

😣 🗢 💷 FLIRT - FMRIB's Linear Image Registration Tool - v6.0	
Mode Input image -> Reference image Reference image /usr/local/fsl/data/standard/MNI152_T1_1mm.nii.gz Model/DDF (input to ref) Affine (12 parameter model) Input image /home/user1/Desktop/BrainPrep/volumes/ro.nii.gz Output image /home/user1/Desktop/BrainPrep/volumes/reg.nii.gz Number of secondary images to apply transform to 0	<pre>Mode Input image -> Reference image =/ Reference image /usr/local/fsl/data/standard/MNI152_T1_1mm.nii.gz image Model/DDF (input to ref) Affine (12 parameter model) =/ Input image /home/user1/Desktop/BrainPrep/volumes/ro.nii.gz image Output image /home/user1/Desktop/BrainPrep/volumes/reg.nii.gz image</pre>
Search Angles X-axis (degrees): min -90 - max 90 - max Y-axis (degrees): min -90 - max 90 - max Z-axis (degrees): min -90 - max 90 - max Go Exit Help Utils	Go Exit Help Utils

2.5.2 Change Interpolation Option

In **Interpolation** tab, select the third option **Spline**. Then, click **Go** to run the program.

😣 🗢 🗉 🛛 FLIRT - FMRIB's Linear Image Registration Tool - v6.0		
Mode Input image -> Reference image Reference image /usr/local/fsl/data/standard/MNI152_T1_1mm.nii.gz Model/DOF (input to ref) Affine (12 parameter model) Input image /home/user1/Desktop/BrainPrep/volumes/ro.nii.gz Output image /home/user1/Desktop/BrainPrep/volumes/reg.nii.gz Number of secondary images to apply transform to 0		
<pre>> Advanced Options Search Cost Function Interpolation Weighting Volumes Final Interpolation Method (Reslice Only) Tri-Linear Nearest Neighbour Spline Sinc</pre>		
Go Exit Help Utils		

2.5.3 Waiting for Program Finished

In terminal, the command used to do registration is printed out.

```
suser1@s2152: ~/Desktop/BrainPrep/volumes
user1@s2152: ~/Desktop/BrainPrep/volumes$ Flirt
/usr/local/fsl/bin/flirt -in /home/user1/Desktop/BrainPrep/volumes/ro.nii.gz -re
f /usr/local/fsl/data/standard/MNI152_T1_1mm.nii.gz -out /home/user1/Desktop/Bra
inPrep/volumes/reg.nii.gz -omat /home/user1/Desktop/BrainPrep/volumes/reg.mat -b
ins 256 -cost corratio -searchrx 0 0 -searchry 0 0 -searchrz 0 0 -dof 12 -inter
p spline
Finished
```

2.5.3 Check Output

You can find the output file in **Desktop/BrainPrep/volumes** with name **reg.nii.gz**. Use **MRIcron** to display the output image. After program finished, close the Flirt window.

ro.nii.gz

reg.nii.gz

3.1 Start Software

In terminal, input command:

for **Ubuntu** is: **Bet**, for **macOS** is: **Bet_gui**, click **Enter**.

😣 🗆 💷 user1@s2152: ~/Desktop/BrainPrep	o/volumes	
user1@s2152:~/Desktop/BrainPrep/volur	n es \$ Bet	
😣 🖻 💷 BET - Brain Extraction Tool - v	/2.1	
Input image	<u></u>	
Output image	<u></u>	
Fractional intensity threshold; smaller	values give larger brain outl	ine estimates 0.5 🚔
Run standard brain extraction using bet	2 💻	
▷ Advanced options		
Go	Exit	Help

3.2 Set Path for Input Image

Click the button in red box, select **reg.nii.gz** as input image, click **Ok**.

3.3 Set Path for Output Image

Change the name of output file to **noskull** in "Output Image" box. The name of output image will be **noskull.nii.gz**.

😣 🗖 💷 🛛 BET - Brain Extraction	n Tool - v2.1	
Input image /home/user1/Deskt	top/BrainPrep/volumes/reg	<u></u>
Output image /home/user1/Desktop	p/BrainPrep/volumes/noskull	
Fractional intensity threshold;	smaller values give larger H	orain outline estimates 0.5 🚔
Run standard brain extraction	using bet2 💻	
> Advanced options		
Go	Exit	Help

3.4 Select Method

Click the button in red box and select the second option **Robust brain centre estimation (iterates bet2 several times)**. Click **Go** to run the program.

BET - Brain Extraction Tool - v2.1	
nput image /home/user1/Desktop/BrainPrep/volumes/reg 🔄	
utput image /home/user1/Desktop/BrainPrep/volumes/noskull 🔄	
ractional intensity threshold: smaller values give larger brain outline estimates 0.5 🍧	
Run standard brain extraction using bet2 💻	
> Advanced options	
Go Exit Help	
	_
😕 📼 💷 BET - Brain Extraction Tool - v2.1	
Input image /home/user1/Desktop/BrainPrep/volumes/reg	
Output image /home/user1/Desktop/BrainPrep/volumes/noskull 🔄	
Fractional intensity threshold; smaller values give larger brain outline estimates 0.5 🚔	
Robust brain centre estimation (iterates bet2 several times) 💻	
> Advanced options	
Go Exit Help	

3.5 Waiting for Program Finished

In terminal, the command used to do skull stripping is printed out.

```
selem user1@s2152: ~/Desktop/BrainPrep/volumes
user1@s2152: ~/Desktop/BrainPrep/volumes$ Bet
/usr/local/fsl/bin/bet /home/user1/Desktop/BrainPrep/volumes/reg /home/user1/Des
ktop/BrainPrep/volumes/noskull -R -f 0.5 -g 0

Finished
```

3.6 Check Output

You can find the output file in **Desktop/BrainPrep/volumes** with name **noskull.nii.gz**. Use **MRIcron** to display the output image. After program finished, close the Bet window.

reg.nii.gz

noskull.nii.gz

4. Bias Field Correction

4.1 Run Program

This step is performed by ANTs. I only did the test in **Ubuntu** system. The command should also work in **macOS**. **If not, you may skip this step.**

In terminal, input command: N4BiasFieldCorrection -i noskull.nii.gz -o bfc.nii.gz -d 3 -s 3 -c [100x100x60x40, 0.0001] -b [300], click Enter.

-i: input file name-o: output file name

user1@s2152: ~/Desktop/BrainPrep/volumes

 user1@s2152: ~/Desktop/BrainPrep/volumes\$ N4BiasFieldCorrection -i noskull.nii.gz
 -o bfc.nii.gz -d 3 -s 3 -c [100x100x60x40, 0.0001] -b [300]

4. Bias Field Correction

4.2 Check Output

You can find the output file in **Desktop/BrainPrep/volumes** with name **bfc.nii.gz**. Use **MRIcron** to display the output image.

noskull.nii.gz

bfc.nii.gz

4. Bias Field Correction

Notes:

Two disadvantages of using command line in terminal to do bias field correction:

- It can only process one input image at every run.
- It is a bit difficult to change parameters, since it does not has a friendly user interface.

5.1 Start Software

In terminal, input command:

for **Ubuntu** is: **Fast**, for **macOS** is: **Fast_gui**, click **Enter**.

user1@s2152: ~/Desktop/BrainPrep/volumes
user1@s2152:~/Desktop/BrainPrep/volumes\$ Fast

😣 😑 🗉 🕞 FAST - FMRIB's Automated Segmentation Tool - v
Input
Number of input channels 1 🚆
Input image
Image type T1-weighted —
Output
Output image(s) basename
Number of classes 3 🚔
Output images:
Binary segmentation: Also output one image per class 💷
Partial volume maps 📮 Restored input 💷 Estimated Bias field 💷
> Advanced options
Go Exit Help

5.2 Set Path for Input Image

Click the button in red box, select **noskull.nii.gz** as input image. Because **Fast** will do bias field correction before doing segmentation. Click **Ok**.

😣 😑 🗉 🛛 FAST - FMRIB's Automated Segmentation Tool - v	😣 🗆 💷 Select the input image
Input Number of input channels 1 * Input image Image type T1-weighted - Output Output Output image(s) basename Number of classes 3 *	Filter: /home/user1/Desktop/BrainPrep/volumes/IMAGE Directories: Files: bfc.nii.gz reg.nii.gz reg.nii.gz sample.nii.gz
Output images: Binary segmentation: Also output one image per class Partial volume maps Advanced options Go Exit Help	Selection: /home/user1/Desktop/BrainPrep/volumes/noskull.n Ok Filter Cancel

5.3 Set Basename for Output Image

Change the basename of output file to **segmented** in "Output Image(s) basename" box. The names of output images will be started with **segmented**. Click **Go** to run program.

😣 🖱 🗊 🛛 FAST - FMRIB's Automated Segmentation Tool - v
Input
Number of input channels 1 🚆
Input image /home/user1/Desktop/BrainPrep/volumes/no: 🔄
Image type T1-weighted -
Output
Output image(s) basename ser1/Desktop/BrainPrep/volumes/ <u>segmented</u> 🔄
Number of classes 3 🚔
Output images:
Binary segmentation: Also output one image per class 📮
Partial volume maps 📮 Restored input 📮 Estimated Bias field 📮
> Advanced options
Go Exit Help

5.4 Waiting for Program Finished

In terminal, the command used to do tissue segmentation is printed out.

5.5 Check Outputs

You can find the output files in **Desktop/BrainPrep/volumes** whose name is started with **segmented**. Use **MRIcron** to display the output images. After program finished, close the Fast window.

Output images:

- **segmented_seg.nii.gz**: contains three labels, 1 for CSF, 2 for gray matter and 3 for white matter.
- **segmented_pve_0.nii.gz**: segmentation of CSF.
- **segmented_pve_1.nii.gz**: segmentation of gray matter.
- **segmented_pve_2.nii.gz**: segmentation of white matter.

noskull.nii.gz

segmented_seg.nii.gz

segmented_pve_0.nii.gz (CSF) segmented_pve_1.nii.gz (Gray Matter) segmented_pve_2.nii.gz (White Matter)

Resources

1. FSL

- Official website: https://fsl.fmrib.ox.ac.uk/fsl/fslwiki
- List of all programs: https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FslOverview
- FSL courses: http://fsl.fmrib.ox.ac.uk/fslcourse/

2. ANTs

- Source code: https://github.com/ANTsX/ANTs
- Wiki page: https://github.com/ANTsX/ANTs/wiki