[c67d27]: / Medical-Image-Segmentation_DCGAN.py

Download this file

487 lines (329 with data), 14.6 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
# coding: utf-8
# In[1]:
import os
from medpy.io import load
import numpy as np
import cv2 as cv
from PIL import Image
PATH = os.path.abspath("E:/UB CSE/Spring 2018/700/Project/BRATS2013/BRATS_Training/BRATS-2/Image_Data")
# pad image to standardize size, then crop down as required (by memory constraints)
def pad_image(img, desired_shape=(256, 256)):
pad_top = 0
pad_bot = 0
pad_left = 0
pad_right = 0
if desired_shape[0] > img.shape[0]:
pad_top = int((desired_shape[0] - img.shape[0]) / 2)
pad_bot = desired_shape[0] - img.shape[0] - pad_top
if desired_shape[1] > img.shape[1]:
pad_left = int((desired_shape[1] - img.shape[1]) / 2)
pad_right = desired_shape[1] - img.shape[1] - pad_left
img = np.pad(img, ((pad_top, pad_bot), (pad_left, pad_right)), 'constant')
img = img[50:200,50:200]
img = cv.resize(img, dsize=(28,28), interpolation=cv.INTER_CUBIC)
return img
def normalize(img):
nimg = None
nimg = cv.normalize(img.astype('float'), nimg, alpha=0.0, beta=1.0, norm_type=cv.NORM_MINMAX)
nimg = pad_image(nimg, desired_shape=(256, 256))
nimg.round(decimals=2)
return nimg
def load_single_image(path):
for dir, subdir, files in os.walk(path):
for file in files:
if file.endswith(".mha"):
img = load_itk(os.path.join(path, file))
return img
def create_1_chan_data(flair, ot):
ot_layers = []
flair_layers = []
# print("OT shape",ot.shape[2])
for layer in range(ot.shape[2]):
ot_layers.append(pad_image(ot[:, :, layer], desired_shape=(256, 256)))
# print("Flair intensities: ", np.unique(flair[:, :, layer]))
normalizedImage = normalize(flair[:, :, layer])
# print("Normalized Image intensities: ", np.unique(normalizedImage))
flair_layers.append(normalizedImage)
return np.stack(ot_layers, axis=0), np.stack(flair_layers, axis=0)
# BRaTS dataset contains 4 channels of input data and one channel of groundtruth for a 3D brain scan image.
def load_dataset(path):
train_flair = []
train_ot = []
for dir in os.listdir(path):
if dir == 'HG':
HG_path = os.path.join(path, 'HG')
for dir2 in os.listdir(HG_path):
if dir2 != '.DS_Store':
HG_flair = load_single_image(os.path.join(HG_path, dir2, 'VSD.Brain.XX.O.MR_Flair'))
HG_ot = load_single_image(os.path.join(HG_path, dir2, 'VSD.Brain_3more.XX.XX.OT'))
assert (HG_ot.shape == HG_flair.shape )
HG_samples = create_1_chan_data(HG_flair, HG_ot)
train_ot.append(HG_samples[0])
train_flair.append(HG_samples[1])
if dir == 'LG':
brain_1 = brain_2 = brain_3 = False
LG_path = os.path.join(path, 'LG')
for dir3 in os.listdir(LG_path):
if dir3 != '.DS_Store':
LG_flair = load_single_image(os.path.join(LG_path, dir3, 'VSD.Brain.XX.O.MR_Flair'))
brain_1 = os.path.exists(os.path.join(LG_path, dir3, 'VSD.Brain_1more.XX.XX.OT'))
brain_2 = os.path.exists(os.path.join(LG_path, dir3, 'VSD.Brain_2more.XX.XX.OT'))
brain_3 = os.path.exists(os.path.join(LG_path, dir3, 'VSD.Brain_3more.XX.XX.OT'))
if brain_1:
LG_ot = load_single_image(os.path.join(LG_path, dir3, 'VSD.Brain_1more.XX.XX.OT'))
if brain_2:
LG_ot = load_single_image(os.path.join(LG_path, dir3, 'VSD.Brain_2more.XX.XX.OT'))
if brain_3:
LG_ot = load_single_image(os.path.join(LG_path, dir3, 'VSD.Brain_3more.XX.XX.OT'))
assert (LG_ot.shape == LG_flair.shape)
LG_samples = create_1_chan_data(LG_flair, LG_ot)
train_ot.append(LG_samples[0])
train_flair.append(LG_samples[1])
# Stacking all individual layers
train_ot = np.vstack(train_ot)
train_flair = np.vstack(train_flair)
assert (train_ot.shape == train_flair.shape)
return train_flair,train_ot
# In[2]:
#SimpleITK is used for reading the brain scan images
import SimpleITK as sitk
import numpy as np
import os
import glob
from medpy.io import load
'''
This funciton reads a '.mhd' file using SimpleITK and return the image array, origin and spacing of the image.
'''
def load_itk(filename):
# Reads the image using SimpleITK
itkimage = sitk.ReadImage(filename)
# Convert the image to a numpy array first and then shuffle the dimensions to get axis in the order z,y,x
ct_scan = sitk.GetArrayFromImage(itkimage)
# Read the origin of the ct_scan, will be used to convert the coordinates from world to voxel and vice versa.
origin = np.array(list(reversed(itkimage.GetOrigin())))
# Read the spacing along each dimension
spacing = np.array(list(reversed(itkimage.GetSpacing())))
# return ct_scan, origin, spacing
return ct_scan
# In[3]:
flair_data, ot_data =load_dataset(PATH)
# In[4]:
print(flair_data.shape)
# In[5]:
import matplotlib.pyplot as plt
# fig1 = plt.figure()
plt.imshow(ot_data[420,:,:])
plt.savefig('sample.png')
plt.show()
# In[6]:
print(np.unique(ot_data[420,:,:]))
# In[7]:
# imginput = x[0]
# imgoutput = x[1]
# In[8]:
print(flair_data.shape)
# In[9]:
print(ot_data.shape)
# In[10]:
np.amax(ot_data)
# # Experiment
# In[11]:
import os
from glob import glob
from matplotlib import pyplot
from PIL import Image
import numpy as np
# Image configuration
IMAGE_HEIGHT = 28
IMAGE_WIDTH = 28
data_files = PATH
# shape = len(data_files), IMAGE_WIDTH, IMAGE_HEIGHT,1
shape = flair_data.shape[0],flair_data.shape[1],flair_data.shape[2],1
print(shape)
# In[12]:
def get_batches(batch_size):
"""
Generate batches
"""
# IMAGE_MAX_VALUE = 255
current_index = 0
while current_index + batch_size <= shape[0]:
data_batch = (ot_data[current_index:current_index + batch_size])
z_batch = (flair_data[current_index:current_index + batch_size])
#print(type(data_batch))
#print(data_batch.shape)
data_batch = data_batch[...,np.newaxis]
#print(data_batch.shape)
# np.vstack((data_batch, x[1,current_index:current_index + batch_size]))
current_index += batch_size
# return data_batch / IMAGE_MAX_VALUE - 0.5
# yield data_batch / IMAGE_MAX_VALUE - 0.5
#print("db:",data_batch.shape)
yield data_batch, z_batch
# In[13]:
print(get_batches(4))
# In[14]:
import tensorflow as tf
def model_inputs(image_width, image_height, image_channels, z_dim):
"""
Create the model inputs
"""
inputs_real = tf.placeholder(tf.float32, shape=(None, image_width, image_height, image_channels), name='input_real')
inputs_z = tf.placeholder(tf.float32, shape=(None,z_dim), name='input_z')
learning_rate = tf.placeholder(tf.float32, name='learning_rate')
return inputs_real, inputs_z, learning_rate
# In[15]:
def discriminator(images, reuse=False):
"""
Create the discriminator network
"""
alpha = 0.2
#print("image size:",images.shape)
with tf.variable_scope('discriminator', reuse=reuse):
# using 4 layer network as in DCGAN Paper
# Conv 1
conv1 = tf.layers.conv2d(images, 64, 5, 2, 'SAME')
lrelu1 = tf.maximum(alpha * conv1, conv1)
# print("layer1:",lrelu1.shape)
# Conv 2
conv2 = tf.layers.conv2d(lrelu1, 128, 5, 2, 'SAME')
batch_norm2 = tf.layers.batch_normalization(conv2, training=True)
lrelu2 = tf.maximum(alpha * batch_norm2, batch_norm2)
# print("layer2:",lrelu2.shape)
# Conv 3
conv3 = tf.layers.conv2d(lrelu2, 256, 5, 1, 'SAME')
batch_norm3 = tf.layers.batch_normalization(conv3, training=True)
lrelu3 = tf.maximum(alpha * batch_norm3, batch_norm3)
# print("layer3:",lrelu3.shape)
# Flatten
flat = tf.reshape(lrelu3, (-1, 1*1*256))
# print("layer4:",flat.shape)
# Logits
logits = tf.layers.dense(flat, 1)
# Output
out = tf.sigmoid(logits)
return out, logits
# In[16]:
def generator(z, out_channel_dim, is_train=True):
"""
Create the generator network
"""
alpha = 0.2
# print("gen,z:",z.shape)
with tf.variable_scope('generator', reuse=False if is_train==True else True):
# using 4 layer network as in DCGAN Paper
# First fully connected layer
x_1 = tf.layers.dense(z, 2*2*512)
#print("Gen,fully conn layer 1:",x_1.shape)
# Reshape it to start the convolutional stack
deconv_2 = tf.reshape(x_1, (-1, 2, 2, 512))
batch_norm2 = tf.layers.batch_normalization(deconv_2, training=is_train)
lrelu2 = tf.maximum(alpha * batch_norm2, batch_norm2)
#print("Gen,fully conn layer 1 reshape: ",lrelu2.shape)
# Deconv 1
deconv3 = tf.layers.conv2d_transpose(lrelu2, 256, 5, 2, padding='VALID')
batch_norm3 = tf.layers.batch_normalization(deconv3, training=is_train)
lrelu3 = tf.maximum(alpha * batch_norm3, batch_norm3)
#print("Gen,deconv layer 1 : ",lrelu3.shape)
# Deconv 2
deconv4 = tf.layers.conv2d_transpose(lrelu3, 128, 5, 2, padding='SAME')
batch_norm4 = tf.layers.batch_normalization(deconv4, training=is_train)
lrelu4 = tf.maximum(alpha * batch_norm4, batch_norm4)
#print("Gen,deconv layer 2 : ",lrelu4.shape)
# Output layer
logits = tf.layers.conv2d_transpose(lrelu4, out_channel_dim, 5, 2, padding='SAME')
#print("Gen,output layer : ",logits.shape)
out = tf.tanh(logits)
return out
# In[17]:
def model_loss(input_real, input_z, out_channel_dim):
"""
Get the loss for the discriminator and generator
"""
label_smoothing = 0.9
g_model = generator(input_z, out_channel_dim)
d_model_real, d_logits_real = discriminator(input_real)
#print("gmodel size", g_model.shape)
d_model_fake, d_logits_fake = discriminator(g_model, reuse=True)
# Change it to norm_l2 loss between generated groundtruth and actual groundtruth
d_loss_real = tf.reduce_mean(
tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_real,
labels=tf.ones_like(d_model_real) * label_smoothing))
d_loss_fake = tf.reduce_mean(
tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_fake,
labels=tf.zeros_like(d_model_fake)))
d_loss = d_loss_real + d_loss_fake
g_loss = tf.reduce_mean(
tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_fake,
labels=tf.ones_like(d_model_fake) * label_smoothing))
return d_loss, g_loss
# In[18]:
def model_opt(d_loss, g_loss, learning_rate, beta1):
"""
Get optimization operations
"""
t_vars = tf.trainable_variables()
d_vars = [var for var in t_vars if var.name.startswith('discriminator')]
g_vars = [var for var in t_vars if var.name.startswith('generator')]
# Optimize
with tf.control_dependencies(tf.get_collection(tf.GraphKeys.UPDATE_OPS)):
d_train_opt = tf.train.AdamOptimizer(learning_rate, beta1=beta1).minimize(d_loss, var_list=d_vars)
g_train_opt = tf.train.AdamOptimizer(learning_rate, beta1=beta1).minimize(g_loss, var_list=g_vars)
return d_train_opt, g_train_opt
# In[19]:
def show_generator_output(sess, n_images, input_z, out_channel_dim,counter):
"""
Show example output for the generator
"""
# z_dim = input_z.get_shape().as_list()[-1]
# example_z = np.random.uniform(-1, 1, size=[n_images, z_dim])
example_z = np.reshape(flair_data[420,:,:],(1,IMAGE_WIDTH*IMAGE_HEIGHT))
samples = sess.run(
generator(input_z, out_channel_dim, False),
feed_dict={input_z: example_z})
#print("SAmples shape: ", samples.shape)
pyplot.imshow(samples[0,:,:,0])
path = "out"+str(counter)+".png"
pyplot.savefig(path)
pyplot.show()
# In[20]:
def train(epoch_count, batch_size, z_dim, learning_rate, beta1, get_batches, data_shape):
"""
Train the GAN
"""
input_real, input_z, _ = model_inputs(data_shape[1], data_shape[2], data_shape[3], z_dim)
d_loss, g_loss = model_loss(input_real, input_z, data_shape[3])
d_opt, g_opt = model_opt(d_loss, g_loss, learning_rate, beta1)
steps = 0
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for epoch_i in range(epoch_count):
for batch_images,batch_z in get_batches(batch_size):
# values range from -0.5 to 0.5, therefore scale to range -1, 1
# batch_images = batch_images * 2
steps += 1
batch_z = np.reshape(batch_z,(batch_size, IMAGE_WIDTH*IMAGE_HEIGHT))
# batch_z = np.random.uniform(-1, 1, size=(batch_size, z_dim)
#print("Batch:",batch_images.shape)
#print("Batch Z:",batch_z.shape)
_ = sess.run(d_opt, feed_dict={input_real: batch_images, input_z: batch_z})
_ = sess.run(g_opt, feed_dict={input_real: batch_images, input_z: batch_z})
counter = 0
if steps % 400 == 0:
counter = counter+1
# At the end of every 10 epochs, get the losses and print them out
train_loss_d = d_loss.eval({input_z: batch_z, input_real: batch_images})
train_loss_g = g_loss.eval({input_z: batch_z})
print("Epoch {}/{}...".format(epoch_i+1, epochs),
"Discriminator Loss: {:.4f}...".format(train_loss_d),
"Generator Loss: {:.4f}".format(train_loss_g))
_ = show_generator_output(sess, 1, input_z, data_shape[3],(steps/40))
# In[21]:
#### import tensorflow as tf
batch_size = 5
z_dim = 784
learning_rate = 0.0002
beta1 = 0.5
epochs = 100
with tf.Graph().as_default():
train(epochs, batch_size, z_dim, learning_rate, beta1, get_batches, shape)