|
a |
|
b/model.py |
|
|
1 |
import tensorflow.keras.backend as K |
|
|
2 |
from tensorflow.keras.models import Model |
|
|
3 |
from tensorflow.keras import Input |
|
|
4 |
from tensorflow.keras.layers import Conv2D, PReLU, UpSampling2D, concatenate , Reshape, Dense, Permute, MaxPool2D |
|
|
5 |
from tensorflow.keras.layers import GlobalAveragePooling2D, Activation, add, GaussianNoise, BatchNormalization, multiply |
|
|
6 |
from tensorflow.keras.optimizers import SGD |
|
|
7 |
from loss import custom_loss |
|
|
8 |
K.set_image_data_format("channels_last") |
|
|
9 |
|
|
|
10 |
|
|
|
11 |
|
|
|
12 |
def unet_model(input_shape, modified_unet=True, learning_rate=0.01, start_channel=64, |
|
|
13 |
number_of_levels=3, inc_rate=2, output_channels=4, saved_model_dir=None): |
|
|
14 |
""" |
|
|
15 |
Builds UNet model |
|
|
16 |
|
|
|
17 |
Parameters |
|
|
18 |
---------- |
|
|
19 |
input_shape : tuple |
|
|
20 |
Shape of the input data (height, width, channel) |
|
|
21 |
modified_unet : bool |
|
|
22 |
Whether to use modified UNet or the original UNet |
|
|
23 |
learning_rate : float |
|
|
24 |
Learning rate for the model. The default is 0.01. |
|
|
25 |
start_channel : int |
|
|
26 |
Number of channels of the first conv. The default is 64. |
|
|
27 |
number_of_levels : int |
|
|
28 |
The depth size of the U-structure. The default is 3. |
|
|
29 |
inc_rate : int |
|
|
30 |
Rate at which the conv channels will increase. The default is 2. |
|
|
31 |
output_channels : int |
|
|
32 |
The number of output layer channels. The default is 4 |
|
|
33 |
saved_model_dir : str |
|
|
34 |
If spesified, the model weights will be loaded from this path. The default is None. |
|
|
35 |
|
|
|
36 |
Returns |
|
|
37 |
------- |
|
|
38 |
model : keras.model |
|
|
39 |
The created keras model with respect to the input parameters |
|
|
40 |
|
|
|
41 |
""" |
|
|
42 |
|
|
|
43 |
|
|
|
44 |
input_layer = Input(shape=input_shape, name='the_input_layer') |
|
|
45 |
|
|
|
46 |
if modified_unet: |
|
|
47 |
x = GaussianNoise(0.01, name='Gaussian_Noise')(input_layer) |
|
|
48 |
x = Conv2D(64, 2, padding='same')(x) |
|
|
49 |
x = level_block_modified(x, start_channel, number_of_levels, inc_rate) |
|
|
50 |
x = BatchNormalization(axis = -1)(x) |
|
|
51 |
x = PReLU(shared_axes=[1, 2])(x) |
|
|
52 |
else: |
|
|
53 |
x = level_block(input_layer, start_channel, number_of_levels, inc_rate) |
|
|
54 |
|
|
|
55 |
x = Conv2D(output_channels, 1, padding='same')(x) |
|
|
56 |
output_layer = Activation('softmax')(x) |
|
|
57 |
|
|
|
58 |
model = Model(inputs = input_layer, outputs = output_layer) |
|
|
59 |
|
|
|
60 |
if modified_unet: |
|
|
61 |
print("The modified UNet was built!") |
|
|
62 |
else: |
|
|
63 |
print("The original UNet was built!") |
|
|
64 |
|
|
|
65 |
if saved_model_dir: |
|
|
66 |
model.load_weights(saved_model_dir) |
|
|
67 |
print("the model weights were successfully loaded!") |
|
|
68 |
|
|
|
69 |
sgd = SGD(lr=learning_rate, momentum=0.9, decay=0) |
|
|
70 |
model.compile(optimizer=sgd, loss=custom_loss) |
|
|
71 |
|
|
|
72 |
return model |
|
|
73 |
|
|
|
74 |
|
|
|
75 |
def se_block(x, ratio=16): |
|
|
76 |
|
|
|
77 |
""" |
|
|
78 |
creates a squeeze and excitation block |
|
|
79 |
https://arxiv.org/abs/1709.01507 |
|
|
80 |
|
|
|
81 |
Parameters |
|
|
82 |
---------- |
|
|
83 |
x : tensor |
|
|
84 |
Input keras tensor |
|
|
85 |
ratio : int |
|
|
86 |
The reduction ratio. The default is 16. |
|
|
87 |
|
|
|
88 |
Returns |
|
|
89 |
------- |
|
|
90 |
x : tensor |
|
|
91 |
A keras tensor |
|
|
92 |
""" |
|
|
93 |
|
|
|
94 |
|
|
|
95 |
channel_axis = 1 if K.image_data_format() == "channels_first" else -1 |
|
|
96 |
filters = x.shape[channel_axis] |
|
|
97 |
se_shape = (1, 1, filters) |
|
|
98 |
|
|
|
99 |
se = GlobalAveragePooling2D()(x) |
|
|
100 |
se = Reshape(se_shape)(se) |
|
|
101 |
se = Dense(filters // ratio, activation='relu', kernel_initializer='he_normal', use_bias=False)(se) |
|
|
102 |
se = Dense(filters, activation='sigmoid', kernel_initializer='he_normal', use_bias=False)(se) |
|
|
103 |
|
|
|
104 |
if K.image_data_format() == 'channels_first': |
|
|
105 |
se = Permute((3, 1, 2))(se) |
|
|
106 |
|
|
|
107 |
x = multiply([x, se]) |
|
|
108 |
return x |
|
|
109 |
|
|
|
110 |
|
|
|
111 |
def level_block(x, dim, level, inc): |
|
|
112 |
|
|
|
113 |
if level > 0: |
|
|
114 |
m = conv_layers(x, dim) |
|
|
115 |
x = MaxPool2D(pool_size=(2, 2))(m) |
|
|
116 |
x = level_block(x,int(inc*dim), level-1, inc) |
|
|
117 |
x = UpSampling2D(size=(2, 2))(x) |
|
|
118 |
x = Conv2D(dim, 2, padding='same')(x) |
|
|
119 |
m = concatenate([m,x]) |
|
|
120 |
x = conv_layers(m, dim) |
|
|
121 |
else: |
|
|
122 |
x = conv_layers(x, dim) |
|
|
123 |
return x |
|
|
124 |
|
|
|
125 |
|
|
|
126 |
def level_block_modified(x, dim, level, inc): |
|
|
127 |
|
|
|
128 |
if level > 0: |
|
|
129 |
m = res_block(x, dim, encoder_path=True)########## |
|
|
130 |
x = Conv2D(int(inc*dim), 2, strides=2, padding='same')(m) |
|
|
131 |
x = level_block_modified(x, int(inc*dim), level-1, inc) |
|
|
132 |
|
|
|
133 |
x = UpSampling2D(size=(2, 2))(x) |
|
|
134 |
x = Conv2D(dim, 2, padding='same')(x) |
|
|
135 |
|
|
|
136 |
m = concatenate([m,x]) |
|
|
137 |
m = se_block(m, 8) |
|
|
138 |
x = res_block(m, dim, encoder_path=False) |
|
|
139 |
else: |
|
|
140 |
x = res_block(x, dim, encoder_path=True) ############# |
|
|
141 |
return x |
|
|
142 |
|
|
|
143 |
|
|
|
144 |
def conv_layers(x, dim): |
|
|
145 |
|
|
|
146 |
x = Conv2D(dim, 3, padding='same')(x) |
|
|
147 |
x = Activation("relu")(x) |
|
|
148 |
|
|
|
149 |
x = Conv2D(dim, 3, padding='same')(x) |
|
|
150 |
x = Activation("relu")(x) |
|
|
151 |
|
|
|
152 |
return x |
|
|
153 |
|
|
|
154 |
def res_block(x, dim, encoder_path=True): |
|
|
155 |
|
|
|
156 |
m = BatchNormalization(axis = -1)(x) |
|
|
157 |
m = PReLU(shared_axes = [1, 2])(m) |
|
|
158 |
m = Conv2D(dim, 3, padding='same')(m) |
|
|
159 |
|
|
|
160 |
m = BatchNormalization(axis = -1)(m) |
|
|
161 |
m = PReLU(shared_axes = [1, 2])(m) |
|
|
162 |
m = Conv2D(dim, 3, padding='same')(m) |
|
|
163 |
|
|
|
164 |
if encoder_path: |
|
|
165 |
x = add([x, m]) |
|
|
166 |
else: |
|
|
167 |
x = Conv2D(dim, 1, padding='same', use_bias=False)(x) |
|
|
168 |
x = add([x,m]) |
|
|
169 |
return x |
|
|
170 |
|