|
a |
|
b/ConvNet_driver.py |
|
|
1 |
# -*- coding: utf-8 -*- |
|
|
2 |
""" |
|
|
3 |
Created on Wed Nov 02 21:35:59 2016 |
|
|
4 |
|
|
|
5 |
@author: seeker105 |
|
|
6 |
""" |
|
|
7 |
import os.path |
|
|
8 |
import sys |
|
|
9 |
from ConvNet import LeNet |
|
|
10 |
import json |
|
|
11 |
import SimpleITK as sitk |
|
|
12 |
import pylab |
|
|
13 |
from skimage import color |
|
|
14 |
from sklearn.utils import shuffle |
|
|
15 |
from scipy.ndimage.interpolation import rotate |
|
|
16 |
from keras.optimizers import SGD |
|
|
17 |
from keras.utils import np_utils |
|
|
18 |
from keras.callbacks import LearningRateScheduler, ModelCheckpoint |
|
|
19 |
import numpy as np |
|
|
20 |
from Brain_pipeline import Pipeline |
|
|
21 |
import Brain_pipeline |
|
|
22 |
import Metrics |
|
|
23 |
from glob import glob |
|
|
24 |
import model_test |
|
|
25 |
|
|
|
26 |
''' Script to drive loading, training, testing and saving the brain MRI |
|
|
27 |
First, we load all the images, and process them through the Pipeline, |
|
|
28 |
and get the pre-processed images as output. |
|
|
29 |
Then, we train the model from ConvNet or load the weights into it. |
|
|
30 |
We divide the training and test data using train_test_split. |
|
|
31 |
''' |
|
|
32 |
def show_segmented_image(orig_img, pred_img): |
|
|
33 |
''' |
|
|
34 |
Show the prediction over the original image |
|
|
35 |
INPUT: |
|
|
36 |
1)orig_img: the test image, which was used as input |
|
|
37 |
2)pred_img: the prediction output |
|
|
38 |
OUTPUT: |
|
|
39 |
segmented image rendering |
|
|
40 |
''' |
|
|
41 |
#define the colours of the labels |
|
|
42 |
red = [10, 0, 0] #label 1 |
|
|
43 |
yellow = [10, 10, 0] #label 2 |
|
|
44 |
green = [0, 10, 0] #label 3 |
|
|
45 |
blue = [0, 0, 10] #label 4 |
|
|
46 |
#convert original image to rgb |
|
|
47 |
gray_im = color.gray2rgb(orig_img) |
|
|
48 |
#color the tumor voxels |
|
|
49 |
gray_im[pred_img == 1] = red |
|
|
50 |
gray_im[pred_img == 2] = yellow |
|
|
51 |
gray_im[pred_img == 3] = green |
|
|
52 |
gray_im[pred_img == 4] = blue |
|
|
53 |
pylab.imshow(gray_im) |
|
|
54 |
|
|
|
55 |
|
|
|
56 |
def step_decay(epochs): |
|
|
57 |
init_rate = 0.003 |
|
|
58 |
fin_rate = 0.00003 |
|
|
59 |
total_epochs = 24 |
|
|
60 |
print 'ep: {}'.format(epochs) |
|
|
61 |
if epochs<25: |
|
|
62 |
lrate = init_rate - (init_rate - fin_rate)/total_epochs * float(epochs) |
|
|
63 |
else: lrate = 0.00003 |
|
|
64 |
print 'lrate: {}'.format(model.optimizer.lr.get_value()) |
|
|
65 |
return lrate |
|
|
66 |
|
|
|
67 |
pth_train = 'D:/New folder/BRATS2015_Training/train_slices/' |
|
|
68 |
pth_test = 'D:/New folder/BRATS2015_Training/test_slices/' |
|
|
69 |
x = Pipeline(pth_train, pth_test) #pass the images through the preprocessing steps |
|
|
70 |
|
|
|
71 |
#build the model |
|
|
72 |
model = LeNet.build_Pereira(33, 33, 4, 5) |
|
|
73 |
|
|
|
74 |
#callback |
|
|
75 |
change_lr = LearningRateScheduler(step_decay) |
|
|
76 |
|
|
|
77 |
#initialize the optimizer and model |
|
|
78 |
opt = SGD(lr = 0.003, momentum=0.9, decay= 0, nesterov = True) |
|
|
79 |
model.compile(loss = 'categorical_crossentropy', optimizer=opt, metrics = ['accuracy']) |
|
|
80 |
|
|
|
81 |
|
|
|
82 |
#load training patches |
|
|
83 |
X_patches, Y_labels, mu, sigma = x.training_patches([180000, 67500, 67500, 67500, 67500]) |
|
|
84 |
tmp = rotate(X_patches, 90, (2, 3)) |
|
|
85 |
tmp = np.append(tmp, rotate(X_patches, -90, (2, 3)), axis=0) |
|
|
86 |
tmp = np.append(tmp, rotate(X_patches, 180, (2, 3)), axis=0) |
|
|
87 |
X_patches = np.append(X_patches, tmp, axis=0) |
|
|
88 |
Y_labels = np.hstack(Y_labels) |
|
|
89 |
for i in xrange(2): |
|
|
90 |
Y_labels = np.append(Y_labels, Y_labels, axis=0) |
|
|
91 |
# Labels should be in categorical array form 1x5 |
|
|
92 |
Y_labels = np_utils.to_categorical(Y_labels, 5) |
|
|
93 |
X_patches, Y_labels = shuffle(X_patches, Y_labels, random_state=0) |
|
|
94 |
|
|
|
95 |
#save model after each epoch |
|
|
96 |
os.mkdir(r'D:\New folder\Pereira_model_checkpoints') |
|
|
97 |
checkpointer = ModelCheckpoint(filepath='D:/New folder/Pereira_model_checkpoints/weights.{epoch:02d}-{val_loss:.2f}.keras2.hdf5',monitor = 'val_loss', verbose=1) |
|
|
98 |
#fit model and shuffle training data |
|
|
99 |
hist = model.fit(X_patches[:200000], Y_labels[:200000], nb_epoch=25, batch_size=128, verbose=1, validation_split=0.1, callbacks = [change_lr, checkpointer]) |
|
|
100 |
|
|
|
101 |
#save model |
|
|
102 |
sv_pth = 'D:/New Folder/Pereira_model_checkpoints/model_weights' |
|
|
103 |
m = '{}.json'.format(sv_pth) |
|
|
104 |
w = '{}.hdf5'.format(sv_pth) |
|
|
105 |
model.save_weights(w) |
|
|
106 |
json_strng = model.to_json() |
|
|
107 |
with open(m, 'w') as f: |
|
|
108 |
json.dump(json_strng, f) |
|
|
109 |
|
|
|
110 |
|
|
|
111 |
#test all the test image slices |
|
|
112 |
test_im = x.test_im.swapaxes(0,1) |
|
|
113 |
gt = test_im[4] |
|
|
114 |
test_im = test_im[:4].swapaxes(0, 1) |
|
|
115 |
predicted_images, params = model_test.test_slices(test_im[158:159], gt[158:159], model, mu, sigma) |
|
|
116 |
|
|
|
117 |
'''test_pths = zip(*x.pathnames_test) |
|
|
118 |
#show a segmented slice |
|
|
119 |
tst = test_pths[0]#random.choice(test_pths) |
|
|
120 |
test_arr = [sitk.GetArrayFromImage(sitk.ReadImage(i)) for i in tst] |
|
|
121 |
final_pth = os.path.dirname(os.path.dirname(tst[0])) + '/' + os.path.splitext(os.path.splitext(os.path.basename(tst[0]))[0])[0] + '_processed_predicted_70.mha' |
|
|
122 |
slice_arr = [test_arr[j][70] for j in xrange(4)] |
|
|
123 |
patches = Brain_pipeline.test_patches(slice_arr) |
|
|
124 |
pred = model.predict_classes(patches) |
|
|
125 |
pred = Brain_pipeline.reconstruct_labels(pred) |
|
|
126 |
show_segmented_image(test_arr[0][70], pred) |
|
|
127 |
sitk.WriteImage(sitk.GetImageFromArray(np.array(pred.astype(float))), final_pth) |
|
|
128 |
|
|
|
129 |
|
|
|
130 |
#evaluate metrics |
|
|
131 |
DSC_arr = [] #stores DSC |
|
|
132 |
DSC_core_arr = [] #stores list of core DSCs |
|
|
133 |
PPV_arr = [] |
|
|
134 |
acc_arr = [] |
|
|
135 |
|
|
|
136 |
#use for getting orignal brain image and prediction label slices |
|
|
137 |
# use for: |
|
|
138 |
#overlay images |
|
|
139 |
#segmentation vs orig label. it's in test_paths |
|
|
140 |
#with/without nyul |
|
|
141 |
#4 sequences after nyul. for original ones, redefine paths |
|
|
142 |
#ok. now we gotta see metrics brother |
|
|
143 |
pred_pth = [] |
|
|
144 |
t1c_pth = [] |
|
|
145 |
pred_arr = [] |
|
|
146 |
|
|
|
147 |
for i in xrange(len(test_pths)): |
|
|
148 |
tst = test_pths[i] |
|
|
149 |
test_arr = [sitk.GetArrayFromImage(sitk.ReadImage(j)) for j in tst] |
|
|
150 |
#take slices |
|
|
151 |
slice_arr = [test_arr[j][70] for j in xrange(4)] |
|
|
152 |
#read original slice label |
|
|
153 |
orig = test_arr[4][70] |
|
|
154 |
patches = Brain_pipeline.test_patches(slice_arr) |
|
|
155 |
pred = model.predict_classes(patches) |
|
|
156 |
pred = Brain_pipeline.reconstruct_labels(pred) |
|
|
157 |
acc_arr.append(Metrics.accuracy(pred, orig)) |
|
|
158 |
DSC_arr.append(Metrics.DSC(pred, orig, 2)) |
|
|
159 |
DSC_core_arr.append(Metrics.DSC_core_tumor(pred, orig)) |
|
|
160 |
PPV_arr.append(Metrics.PPV(pred, orig)) |
|
|
161 |
print 'acc: {}'.format(acc_arr[i]) |
|
|
162 |
print 'DSC: {}'.format(DSC_arr[i]) |
|
|
163 |
print 'DSC_core: {}'.format(DSC_core_arr[i]) |
|
|
164 |
print 'PPV : {}'.format(PPV_arr[i]) |
|
|
165 |
sys.stdout.flush() |
|
|
166 |
final_pth = os.path.dirname(tst[4]) + '/' + os.path.splitext(os.path.basename(tst[0]))[0] + '_predicted_70.mha' |
|
|
167 |
pred_pth.append(final_pth) |
|
|
168 |
pred_arr.append(pred) |
|
|
169 |
t1c_pth.append([flp for flp in glob(os.path.dirname(tst[2]) + '/*.mha') if 'n4' not in flp]) |
|
|
170 |
''' |