|
a |
|
b/Brain_pipeline.py |
|
|
1 |
# -*- coding: utf-8 -*- |
|
|
2 |
""" |
|
|
3 |
Created on Fri Oct 14 01:47:13 2016 |
|
|
4 |
|
|
|
5 |
@author: seeker105 |
|
|
6 |
""" |
|
|
7 |
import os.path |
|
|
8 |
import random |
|
|
9 |
import pylab |
|
|
10 |
import numpy as np |
|
|
11 |
from glob import glob |
|
|
12 |
import SimpleITK as sitk |
|
|
13 |
from Nyul import IntensityRangeStandardization |
|
|
14 |
import sys |
|
|
15 |
import timeit |
|
|
16 |
from sklearn.feature_extraction.image import extract_patches_2d |
|
|
17 |
from skimage import color |
|
|
18 |
|
|
|
19 |
class Pipeline(object): |
|
|
20 |
''' The Pipeline for loading images for all patients and all modalities |
|
|
21 |
1)find_training_patches: finds the training patches for a particular class |
|
|
22 |
|
|
|
23 |
INPUT: |
|
|
24 |
1) The filepath 'path': Directory of the image database. It contains the slices of training image slices |
|
|
25 |
|
|
|
26 |
''' |
|
|
27 |
|
|
|
28 |
def __init__(self, path_train = '', path_test = '' , mx_train = 1000000, mx_tst = 1000000): |
|
|
29 |
self.path_train = path_train |
|
|
30 |
self.path_test = path_test |
|
|
31 |
self.scans_train, self.scans_test, self.train_im, self.test_im = self.read_scans(mx_train, mx_tst) |
|
|
32 |
|
|
|
33 |
|
|
|
34 |
def read_scans(self, mx_train, mx_test): |
|
|
35 |
|
|
|
36 |
scans_train = glob(self.path_train + r'/*.mha') |
|
|
37 |
scans_test = glob(self.path_test + r'/*.mha') |
|
|
38 |
train_im = [sitk.GetArrayFromImage(sitk.ReadImage(scans_train[i])) for i in xrange(min(len(scans_train), mx_train))] |
|
|
39 |
test_im = [sitk.GetArrayFromImage(sitk.ReadImage(scans_test[i])) for i in xrange(min(len(scans_test), mx_test))] |
|
|
40 |
return scans_train, scans_test, np.array(train_im), np.array(test_im) |
|
|
41 |
|
|
|
42 |
|
|
|
43 |
def n4itk(self, img): |
|
|
44 |
img = sitk.Cast(img, sitk.sitkFloat32) |
|
|
45 |
img_mask = sitk.BinaryNot(sitk.BinaryThreshold(img, 0, 0)) ## Create a mask spanning the part containing the brain, as we want to apply the filter to the brain image |
|
|
46 |
corrected_img = sitk.N4BiasFieldCorrection(img, img_mask) |
|
|
47 |
return corrected_img |
|
|
48 |
|
|
|
49 |
'''def find_all_train(self, classes, d = 4, h = 33, w = 33): |
|
|
50 |
mn = 300000000000000 |
|
|
51 |
#load all labels |
|
|
52 |
im_ar = [] |
|
|
53 |
for i in self.pathnames_train: |
|
|
54 |
im_ar.append([sitk.GetArrayFromImage(sitk.ReadImage(idx)) for idx in i]) |
|
|
55 |
im_ar = np.array(im_ar) |
|
|
56 |
for i in xrange(classes): |
|
|
57 |
mn = min(mn, len(np.argwhere(im_ar[i]==i))) |
|
|
58 |
''' |
|
|
59 |
def sample_training_patches(self, num_patches, class_nm, d = 4, h = 33, w = 33): |
|
|
60 |
''' Creates the input patches and their labels for training CNN. The patches are 4x33x33 |
|
|
61 |
and the label for a patch equals to the label for the central pixel of the patch. |
|
|
62 |
|
|
|
63 |
INPUT: |
|
|
64 |
1) num_patches: The number of patches required of the class. |
|
|
65 |
|
|
|
66 |
2) class_nm: The index of class label for which we are finding patches. |
|
|
67 |
|
|
|
68 |
3) d, h, w: number of channels, height and width of patch |
|
|
69 |
|
|
|
70 |
OUTPUT: |
|
|
71 |
1) patches: The list of all patches of dimensions d, h, w. |
|
|
72 |
|
|
|
73 |
2) labels: The list of labels for each patch. Label for a patch corresponds to the label |
|
|
74 |
of the central pixel of that patch. |
|
|
75 |
|
|
|
76 |
''' |
|
|
77 |
|
|
|
78 |
#find patches for training |
|
|
79 |
patches, labels = [], np.full(num_patches, fill_value = class_nm, dtype = np.int32) |
|
|
80 |
count = 0 |
|
|
81 |
# convert gt_im to 1D and save shape |
|
|
82 |
gt_im = np.swapaxes(self.train_im, 0, 1)[4] #swap axes to make axis 0 represent the modality and axis 1 represent the slice. take the ground truth |
|
|
83 |
#take flair image as mask |
|
|
84 |
msk = np.swapaxes(self.train_im, 0, 1)[0] |
|
|
85 |
tmp_shp = gt_im.shape |
|
|
86 |
gt_im = gt_im.reshape(-1) |
|
|
87 |
msk = msk.reshape(-1) |
|
|
88 |
# maintain list of 1D indices where label = class_nm |
|
|
89 |
indices = np.squeeze(np.argwhere((gt_im == class_nm) & (msk != 0.))) |
|
|
90 |
# shuffle the list of indices of the class |
|
|
91 |
st = timeit.default_timer() |
|
|
92 |
np.random.shuffle(indices) |
|
|
93 |
print 'shuffling of label {} took :'.format(class_nm), timeit.default_timer()-st |
|
|
94 |
#reshape gt_im |
|
|
95 |
gt_im = gt_im.reshape(tmp_shp) |
|
|
96 |
st = timeit.default_timer() |
|
|
97 |
#find the patches from the images |
|
|
98 |
i = 0 |
|
|
99 |
pix = len(indices) |
|
|
100 |
while (count<num_patches) and (pix>i): |
|
|
101 |
#print (count, ' cl:' ,class_nm) |
|
|
102 |
#sys.stdout.flush() |
|
|
103 |
#randomly choose an index |
|
|
104 |
ind = indices[i] |
|
|
105 |
i+= 1 |
|
|
106 |
#reshape ind to 3D index |
|
|
107 |
ind = np.unravel_index(ind, tmp_shp) |
|
|
108 |
#print ind |
|
|
109 |
#sys.stdout.flush() |
|
|
110 |
#find the slice index to choose from |
|
|
111 |
slice_idx = ind[0] |
|
|
112 |
#load the slice from the label |
|
|
113 |
l = gt_im[slice_idx] |
|
|
114 |
# the centre pixel and its coordinates |
|
|
115 |
p = ind[1:] |
|
|
116 |
#construct the patch by defining the coordinates |
|
|
117 |
p_x = (p[0] - h/2, p[0] + (h+1)/2) |
|
|
118 |
p_y = (p[1] - w/2, p[1] + (w+1)/2) |
|
|
119 |
#check if the pixels are in range |
|
|
120 |
if p_x[0]<0 or p_x[1]>l.shape[0] or p_y[0]<0 or p_y[1]>l.shape[1]: |
|
|
121 |
continue |
|
|
122 |
#take patches from all modalities and group them together |
|
|
123 |
tmp = self.train_im[slice_idx][0:4, p_x[0]:p_x[1], p_y[0]:p_y[1]] |
|
|
124 |
patches.append(tmp) |
|
|
125 |
count+=1 |
|
|
126 |
print 'finding patches of label {} took :'.format(class_nm), timeit.default_timer()-st |
|
|
127 |
patches = np.array(patches) |
|
|
128 |
return patches, labels |
|
|
129 |
|
|
|
130 |
|
|
|
131 |
def training_patches(self, num_patches, classes = 5, d = 4, h = 33, w = 33): |
|
|
132 |
'''Creates the input patches and their labels for training CNN. The patches are 4x33x33 |
|
|
133 |
and the label for a patch corresponds to the label for the central voxel of the patch. The |
|
|
134 |
data will be balanced, with the number of patches being the same for each class |
|
|
135 |
|
|
|
136 |
INPUT: |
|
|
137 |
1) classes: number of all classes in the segmentation |
|
|
138 |
2) num_patches: number of patches for each class |
|
|
139 |
3) d, h, w : channels, height and width of the patches |
|
|
140 |
OUTPUT: |
|
|
141 |
1) all_patches: numpy array of all class patches of the shape 4x33x33 |
|
|
142 |
2) all_labels : numpy array of the all_patches labels |
|
|
143 |
''' |
|
|
144 |
|
|
|
145 |
patches, labels, mu, sigma = [], [], [], [] |
|
|
146 |
for idx in xrange(classes): |
|
|
147 |
p, l = self.sample_training_patches(num_patches[idx], idx, d, h, w) |
|
|
148 |
patches.append(p) |
|
|
149 |
labels.append(l) |
|
|
150 |
patches = np.vstack(np.array(patches)) |
|
|
151 |
patches_by_channel = np.swapaxes(patches, 0, 1) |
|
|
152 |
for seq, i in zip(patches_by_channel, xrange(d)): |
|
|
153 |
avg = np.mean(seq) |
|
|
154 |
std = np.std(seq) |
|
|
155 |
patches_by_channel[i] = (patches_by_channel[i] - avg)/std |
|
|
156 |
mu.append(avg) |
|
|
157 |
sigma.append(std) |
|
|
158 |
patches = np.swapaxes(patches_by_channel, 0, 1) |
|
|
159 |
return patches, np.array(labels).reshape(-1), np.array(mu), np.array(sigma) |
|
|
160 |
|
|
|
161 |
def test_patches(img , mu, sigma, d = 4, h = 33, w = 33): |
|
|
162 |
''' Creates patches of image. Returns a numpy array of dimension number_of_patches x d. |
|
|
163 |
|
|
|
164 |
INPUT: |
|
|
165 |
1)img: a 3D array containing the all modalities of a 2D image. |
|
|
166 |
2)d, h, w: see above |
|
|
167 |
OUTPUT: |
|
|
168 |
tst_arr: ndarray of all patches of all modalities. Of the form number of patches x modalities |
|
|
169 |
''' |
|
|
170 |
|
|
|
171 |
#list of patches |
|
|
172 |
p = [] |
|
|
173 |
msk = (img[0]+img[1]+img[2]+img[3])!=0. #mask using FLAIR channel |
|
|
174 |
msk = msk[16:-16, 16:-16] #crop the mask to conform to the rebuilt image after prediction |
|
|
175 |
msk = msk.reshape(-1) |
|
|
176 |
for i in xrange(len(img)): |
|
|
177 |
plist = extract_patches_2d(img[i], (h, w)) |
|
|
178 |
plist = (plist - mu[i])/sigma[i] |
|
|
179 |
p.append(plist[msk]) #only take patches with brain mask!=0 |
|
|
180 |
return np.array(p).swapaxes(0,1) |
|
|
181 |
|
|
|
182 |
|
|
|
183 |
def reconstruct_labels(msk, pred_list): |
|
|
184 |
im = np.full((208, 208), 0.) |
|
|
185 |
msk = msk[16:-16, 16:-16] |
|
|
186 |
im[msk] = np.array(pred_list) |
|
|
187 |
im = np.pad(im, (16, 16), mode='edge') |
|
|
188 |
return im |