from __future__ import print_function
# import packages
from model import unet_model_3d
from keras.utils import plot_model
from keras import callbacks
from keras.callbacks import ModelCheckpoint, CSVLogger, LearningRateScheduler, ReduceLROnPlateau, EarlyStopping
# import load data
from data_handling import load_train_data, load_validatation_data
# import configurations
import configs
# init configs
patch_size = configs.PATCH_SIZE
batch_size = configs.BATCH_SIZE
config = dict()
config["pool_size"] = (2, 2, 2) # pool size for the max pooling operations
config["image_shape"] = (256, 128, 256) # This determines what shape the images will be cropped/resampled to.
config["input_shape"] = (patch_size, patch_size, patch_size, 1) # switch to None to train on the whole image (64, 64, 64) (64, 64, 64)
config["n_labels"] = 4
config["all_modalities"] = ['t1']#]["t1", "t1Gd", "flair", "t2"]
config["training_modalities"] = config["all_modalities"] # change this if you want to only use some of the modalities
config["nb_channels"] = len(config["training_modalities"])
config["deconvolution"] = False # if False, will use upsampling instead of deconvolution
config["batch_size"] = batch_size
config["n_epochs"] = 500 # cutoff the training after this many epochs
config["patience"] = 10 # learning rate will be reduced after this many epochs if the validation loss is not improving
config["early_stop"] = 31 # training will be stopped after this many epochs without the validation loss improving
config["initial_learning_rate"] = 0.0001
config["depth"] = configs.DEPTH
config["learning_rate_drop"] = 0.5
image_type = '3d_patches'
# 3D U-net depth=5
def generate_model(num_classes=4) :
init_input = Input((1, 32, 32, 32))
x = Conv3D(25, kernel_size=(3, 3, 3))(init_input)
x = PReLU()(x)
x = Conv3D(25, kernel_size=(3, 3, 3))(x)
x = PReLU()(x)
x = Conv3D(25, kernel_size=(3, 3, 3))(x)
x = PReLU()(x)
y = Conv3D(50, kernel_size=(3, 3, 3))(x)
y = PReLU()(y)
y = Conv3D(50, kernel_size=(3, 3, 3))(y)
y = PReLU()(y)
y = Conv3D(50, kernel_size=(3, 3, 3))(y)
y = PReLU()(y)
z = Conv3D(75, kernel_size=(3, 3, 3))(y)
z = PReLU()(z)
z = Conv3D(75, kernel_size=(3, 3, 3))(z)
z = PReLU()(z)
z = Conv3D(75, kernel_size=(3, 3, 3))(z)
z = PReLU()(z)
x_crop = Cropping3D(cropping=((6, 6), (6, 6), (6, 6)))(x)
y_crop = Cropping3D(cropping=((3, 3), (3, 3), (3, 3)))(y)
concat = concatenate([x_crop, y_crop, z], axis=1)
fc = Conv3D(400, kernel_size=(1, 1, 1))(concat)
fc = PReLU()(fc)
fc = Conv3D(200, kernel_size=(1, 1, 1))(fc)
fc = PReLU()(fc)
fc = Conv3D(150, kernel_size=(1, 1, 1))(fc)
fc = PReLU()(fc)
pred = Conv3D(num_classes, kernel_size=(1, 1, 1))(fc)
pred = PReLU()(pred)
pred = Reshape((num_classes, 9 * 9 * 9))(pred)
pred = Permute((2, 1))(pred)
pred = Activation('softmax')(pred)
model = Model(inputs=init_input, outputs=pred)
model.compile(
loss='categorical_crossentropy',
optimizer='adam',
metrics=['categorical_accuracy'])
return model
# train
def train():
print('-'*30)
print('Loading and preprocessing train data...')
print('-'*30)
imgs_train, imgs_gtruth_train = load_train_data()
print('-'*30)
print('Loading and preprocessing validation data...')
print('-'*30)
imgs_val, imgs_gtruth_val = load_validatation_data()
print('-'*30)
print('Creating and compiling model...')
print('-'*30)
# create a model
model = unet_model_3d(input_shape=config["input_shape"],
depth=config["depth"],
pool_size=config["pool_size"],
n_labels=config["n_labels"],
initial_learning_rate=config["initial_learning_rate"],
deconvolution=config["deconvolution"])
model.summary()
print('-'*30)
print('Fitting model...')
print('-'*30)
#============================================================================
print('training starting..')
log_filename = 'outputs/' + image_type +'_model_train.csv'
csv_log = callbacks.CSVLogger(log_filename, separator=',', append=True)
# early_stopping = callbacks.EarlyStopping(monitor='val_loss', min_delta=0, patience=5, verbose=0, mode='min')
#checkpoint_filepath = 'outputs/' + image_type +"_best_weight_model_{epoch:03d}_{val_loss:.4f}.hdf5"
checkpoint_filepath = 'outputs/' + 'weights.h5'
checkpoint = callbacks.ModelCheckpoint(checkpoint_filepath, monitor='val_loss', verbose=1, save_best_only=True, mode='min')
callbacks_list = [csv_log, checkpoint]
callbacks_list.append(ReduceLROnPlateau(factor=config["learning_rate_drop"], patience=config["patience"],
verbose=True))
callbacks_list.append(EarlyStopping(verbose=True, patience=config["early_stop"]))
#============================================================================
hist = model.fit(imgs_train, imgs_gtruth_train, batch_size=config["batch_size"], nb_epoch=config["n_epochs"], verbose=1, validation_data=(imgs_val,imgs_gtruth_val), shuffle=True, callbacks=callbacks_list) # validation_split=0.2,
model_name = 'outputs/' + image_type + '_model_last'
model.save(model_name) # creates a HDF5 file 'my_model.h5'
# main
if __name__ == '__main__':
train()