[c9b969]: / 3D / data_handling.py

Download this file

282 lines (228 with data), 11.9 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
from __future__ import print_function
# import packages
import time, os, cv2, random
import numpy as np
import nibabel as nib
from sklearn.feature_extraction.image import extract_patches
# import configurations
import configs
# init configs
image_rows = configs.VOLUME_ROWS
image_cols = configs.VOLUME_COLS
image_depth = configs.VOLUME_DEPS
num_classes = configs.NUM_CLASSES
# patch extraction parameters
patch_size = configs.PATCH_SIZE
extraction_step = configs.EXTRACTTION_STEP
extraction_step_csf_only = configs.EXTRACTTION_STEP_CSF
# create npy data
def create_npy_data(train_imgs_path, is_extract_more_csf, is_train):
# empty matrix to hold patches
patches_training_imgs_2d = np.empty(shape=[0, patch_size, patch_size, patch_size], dtype='int16')
patches_training_gtruth_2d = np.empty(shape=[0, patch_size, patch_size, patch_size, num_classes], dtype='int16')
patches_training_imgs_2d_temp = np.empty(shape=[0, patch_size, patch_size, patch_size], dtype='int16')
patches_training_gtruth_2d_temp = np.empty(shape=[0, patch_size, patch_size, patch_size, num_classes], dtype='int16')
images_train_dir = os.listdir(train_imgs_path)
start_time = time.time()
j = 0
print('-' * 30)
print('Creating training 3d_patches...')
print('-' * 30)
count = 0
# for each volume do:
for img_dir_name in images_train_dir:
start_time1 = time.time()
patches_training_imgs_3d_temp = np.empty(shape=[0, patch_size, patch_size, patch_size], dtype='int16')
patches_training_gtruth_3d_temp = np.empty(shape=[0, patch_size, patch_size, patch_size, num_classes],
dtype='int16')
print('Processing: volume {0} / {1} volume images'.format(j + 1, len(images_train_dir)))
# volume
img_name = img_dir_name + '_hist.nii.gz'
img_name = os.path.join(train_imgs_path, img_dir_name, img_name)
print(img_name)
# groundtruth
img_seg_name = img_dir_name + '_seg.nii.gz'
img_seg_name = os.path.join(train_imgs_path, img_dir_name, img_seg_name)
# mask
img_mask_name = img_dir_name + '_mask.nii.gz'
img_mask_name = os.path.join(train_imgs_path, img_dir_name, img_mask_name)
# load volume, gt and mask
img = nib.load(img_name)
img_data = img.get_data()
img_data = np.squeeze(img_data)
img_gtruth = nib.load(img_seg_name)
img_gtruth_data = img_gtruth.get_data()
img_gtruth_data = np.squeeze(img_gtruth_data)
img_mask = nib.load(img_mask_name)
img_mask_data = img_gtruth.get_data()
img_mask_data = np.squeeze(img_mask_data)
# extract 3D patches
imgs_patches, gt_patches = extract_3d_patches(img_data, \
img_gtruth_data, \
img_mask_data, \
is_extract_more_csf)
# update database
count = count + 1
patches_training_imgs_2d_temp = np.append(patches_training_imgs_2d_temp, imgs_patches, axis=0)
patches_training_gtruth_2d_temp = np.append(patches_training_gtruth_2d_temp, gt_patches, axis=0)
# optimize runtime of extracting patches
if count%2==0 or count==5:
patches_training_imgs_2d = np.append(patches_training_imgs_2d, patches_training_imgs_2d_temp, axis=0)
patches_training_gtruth_2d = np.append(patches_training_gtruth_2d, patches_training_gtruth_2d_temp, axis=0)
patches_training_imgs_2d_temp = np.empty(shape=[0, patch_size, patch_size, patch_size], dtype='int16')
patches_training_gtruth_2d_temp = np.empty(shape=[0, patch_size, patch_size, patch_size, num_classes], dtype='int16')
j = j+1
X = patches_training_imgs_2d.shape
X1 = patches_training_imgs_2d_temp.shape
Y = patches_training_gtruth_2d.shape
Y1 = patches_training_gtruth_2d_temp.shape
print('shape im: [{0} , {1} , {2}, {3}]'.format(X[0]+X1[0], X[1], X[2], X[3]))
print('shape gt: [{0} , {1} , {2}, {3}, {4}]'.format(Y[0]+Y1[0], Y[1], Y[2], Y[3], Y[4]))
end_time1 = time.time()
print("Elapsed time was %g seconds" % (end_time1 - start_time1))
# convert to single precision
patches_training_imgs_2d = patches_training_imgs_2d.astype('float32')
patches_training_imgs_2d = np.expand_dims(patches_training_imgs_2d, axis=4)
end_time = time.time()
print("Elapsed time was %g seconds" % (end_time - start_time))
X = patches_training_imgs_2d.shape
Y = patches_training_gtruth_2d.shape
print('-' * 30)
print('Training set detail...')
print('-' * 30)
print('shape im: [{0} , {1} , {2}, {3}, {4}]'.format(X[0], X[1], X[2], X[3], X[4]))
print('shape gt: [{0} , {1} , {2}, {3}, {4}]'.format(Y[0], Y[1], Y[2], Y[3], Y[4]))
S = patches_training_imgs_2d.shape
print('Done: {0} 3d patches added from {1} volume images'.format(S[0], j))
print('Loading done.')
print('Saving to .npy files done.')
if is_train:
np.save('imdbs_3d_patch/patches_training_imgs_2d.npy', patches_training_imgs_2d)
np.save('imdbs_3d_patch/patches_training_gtruth_2d.npy', patches_training_gtruth_2d)
else:
np.save('imdbs_3d_patch/patches_val_imgs_2d.npy', patches_training_imgs_2d)
np.save('imdbs_3d_patch/patches_val_gtruth_2d.npy', patches_training_gtruth_2d)
print('Saving to .npy files done.')
# extract 3d patches
def extract_3d_patches(img_data, gt_data, mask_data, is_extract_more_csf):
# patch details
# patch_size = 32
patch_shape = (patch_size, patch_size, patch_size)
# empty matrix to hold patches
imgs_patches_per_volume = np.empty(shape=[0, patch_size, patch_size, patch_size], dtype='int16')
gt_patches_per_volume = np.empty(shape=[0, patch_size, patch_size, patch_size], dtype='int16')
mask_patches_per_volume = np.empty(shape=[0, patch_size, patch_size, patch_size], dtype='int16')
img_patches = extract_patches(img_data, patch_shape, extraction_step)
gt_patches = extract_patches(gt_data, patch_shape, extraction_step)
mask_patches = extract_patches(mask_data, patch_shape, extraction_step)
rows = []; cols = []; depths = []
for i in range(0, mask_patches.shape[0]):
for j in range(0, mask_patches.shape[1]):
for k in range(0, mask_patches.shape[2]):
Point1 = int(patch_size / 2 - 1)
Point2 = int(patch_size / 2)
a1 = mask_patches.item((i, j, k, Point1, Point1, Point1))
a2 = mask_patches.item((i, j, k, Point1, Point1, Point2))
a3 = mask_patches.item((i, j, k, Point1, Point2, Point1))
a4 = mask_patches.item((i, j, k, Point1, Point2, Point2))
a5 = mask_patches.item((i, j, k, Point2, Point1, Point1))
a6 = mask_patches.item((i, j, k, Point2, Point1, Point2))
a7 = mask_patches.item((i, j, k, Point2, Point2, Point1))
a8 = mask_patches.item((i, j, k, Point2, Point2, Point2))
Sum = a1 + a2 + a3 + a4 + a5 + a6 + a7 + a8
if Sum > 0:
rows.append(i)
cols.append(j)
depths.append(k)
# number of non-zero patches
N = len(rows)
# select non-zero patches index
selected_img_patches = img_patches[rows, cols, depths, :, :, :]
selected_gt_patches = gt_patches[rows, cols, depths, :, :, :]
# update database
imgs_patches_per_volume = np.append(imgs_patches_per_volume, selected_img_patches, axis=0)
gt_patches_per_volume = np.append(gt_patches_per_volume, selected_gt_patches, axis=0)
# extract more patches for CSF
if is_extract_more_csf:
# create CSF mask
extraction_step_csf = extraction_step_csf_only
img_patches_csf = extract_patches(img_data, patch_shape, extraction_step_csf)
gt_patches_csf = extract_patches(gt_data, patch_shape, extraction_step_csf)
# extract CSF patches with small step
rows = [];
cols = [];
depths = []
for i in range(0, gt_patches_csf.shape[0]):
for j in range(0, gt_patches_csf.shape[1]):
for k in range(0, gt_patches_csf.shape[2]):
Point1 = int(patch_size / 2 - 1)
Point2 = int(patch_size / 2)
a1 = gt_patches_csf.item((i, j, k, Point1, Point1, Point1))
a2 = gt_patches_csf.item((i, j, k, Point1, Point1, Point2))
a3 = gt_patches_csf.item((i, j, k, Point1, Point2, Point1))
a4 = gt_patches_csf.item((i, j, k, Point1, Point2, Point2))
a5 = gt_patches_csf.item((i, j, k, Point2, Point1, Point1))
a6 = gt_patches_csf.item((i, j, k, Point2, Point1, Point2))
a7 = gt_patches_csf.item((i, j, k, Point2, Point2, Point1))
a8 = gt_patches_csf.item((i, j, k, Point2, Point2, Point2))
Sum = (a1==1 or a2==1 or a3==1 or a4==1 or a5==1 or a6==1 or a7==1 or a8==1)
if Sum:
rows.append(i)
cols.append(j)
depths.append(k)
N = len(rows)
if N is not 0:
csf_more_img_patches = img_patches_csf[rows, cols, depths, :, :, :]
csf_more_gt_patches = gt_patches_csf[rows, cols, depths, :, :, :]
# update database
imgs_patches_per_volume = np.append(imgs_patches_per_volume, csf_more_img_patches, axis=0)
gt_patches_per_volume = np.append(gt_patches_per_volume, csf_more_gt_patches, axis=0)
# convert to categorical
gt_patches_per_volume = separate_labels(gt_patches_per_volume)
return imgs_patches_per_volume, gt_patches_per_volume
# separate labels
def separate_labels(patch_3d_volume):
result = np.empty(shape=[0, patch_size, patch_size, patch_size, num_classes], dtype='int16')
N = patch_3d_volume.shape[0]
for V in range(N):
V_patch = patch_3d_volume[V, :, :, :]
U = np.unique(V_patch)
unique_values = list(U)
result_v = np.empty(shape=[patch_size, patch_size, patch_size, 0], dtype='int16')
if num_classes == 3:
start_point = 1
else:
start_point = 0
for label in range(start_point, 4):
if label in unique_values:
im_patch = V_patch == label
im_patch = im_patch * 1
else:
im_patch = np.zeros((V_patch.shape))
im_patch = np.expand_dims(im_patch, axis=3)
result_v = np.append(result_v, im_patch, axis=3)
result_v = np.expand_dims(result_v, axis=0)
result = np.append(result, result_v, axis=0)
return result
# load train npy
def load_train_data():
imgs_train = np.load('imdbs_3d_patch/patches_training_imgs_3d.npy')
imgs_gtruth_train = np.load('imdbs_3d_patch/patches_training_gtruth_3d.npy')
return imgs_train, imgs_gtruth_train
# load validation npy
def load_validatation_data():
imgs_validation = np.load('imdbs_3d_patch/patches_val_imgs_3d.npy')
gtruth_validation = np.load('imdbs_3d_patch/patches_val_gtruth_3d.npy')
return imgs_validation, gtruth_validation
# main
if __name__ == '__main__':
if 'imdbs_3d_patch' not in os.listdir(os.curdir):
os.mkdir('imdbs_3d_patch')
train_imgs_path = '../data_new/Training_Set'
val_imgs_path = '../data_new/Validation_Set'
print(train_imgs_path)
print(val_imgs_path)
is_extract_more_csf = 0
create_npy_data(train_imgs_path, is_extract_more_csf, 1)
is_extract_more_csf = 0
create_npy_data(val_imgs_path, is_extract_more_csf, 0)