from __future__ import print_function
# import packages
from model import unet_model_3d
from keras.utils import plot_model
from keras import callbacks
from keras.callbacks import ModelCheckpoint, CSVLogger, LearningRateScheduler, ReduceLROnPlateau, EarlyStopping
# import load data
from data_handling import load_train_data, load_validatation_data
# import configurations
import configs
# init configs
patch_size = configs.PATCH_SIZE
batch_size = configs.BATCH_SIZE
config = dict()
config["pool_size"] = (2, 2, 2) # pool size for the max pooling operations
config["image_shape"] = (256, 128, 256) # This determines what shape the images will be cropped/resampled to.
config["input_shape"] = (patch_size, patch_size, patch_size, 1) # switch to None to train on the whole image (64, 64, 64) (64, 64, 64)
config["n_labels"] = 4
config["all_modalities"] = ['t1']#]["t1", "t1Gd", "flair", "t2"]
config["training_modalities"] = config["all_modalities"] # change this if you want to only use some of the modalities
config["nb_channels"] = len(config["training_modalities"])
config["deconvolution"] = False # if False, will use upsampling instead of deconvolution
config["batch_size"] = batch_size
config["n_epochs"] = 500 # cutoff the training after this many epochs
config["patience"] = 10 # learning rate will be reduced after this many epochs if the validation loss is not improving
config["early_stop"] = 30 # training will be stopped after this many epochs without the validation loss improving
config["initial_learning_rate"] = 0.00005
config["depth"] = configs.DEPTH
config["learning_rate_drop"] = 0.5
image_type = '3d_patches'
# resume training
def resume():
print('-'*30)
print('Loading and preprocessing train data...')
print('-'*30)
imgs_train, imgs_gtruth_train = load_train_data()
print('-'*30)
print('Loading and preprocessing validation data...')
print('-'*30)
imgs_val, imgs_gtruth_val = load_validatation_data()
print('-'*30)
print('Creating and compiling model...')
print('-'*30)
# create a model
model = unet_model_3d(input_shape=config["input_shape"],
depth=config["depth"],
pool_size=config["pool_size"],
n_labels=config["n_labels"],
initial_learning_rate=config["initial_learning_rate"],
deconvolution=config["deconvolution"])
model.summary()
checkpoint_filepath_best = 'outputs/' + 'best_weights_125extract_depth5_patch32_88_943_935.h5'
checkpoint_filepath_best = 'outputs/' + 'best_weights_10extract_depth5_patch32_855_945_935.h5'
checkpoint_filepath_best = 'outputs/' + 'best_weights_12extract_depth5_patch32_85_946_931_norm_tuned10.h5'
checkpoint_filepath_best = 'outputs/' + 'best_weights.h5'
#checkpoint_filepath_best = 'outputs/' + 'best_weights_11extract_depth5_patch32_855_945_935_tunedfrom10extract.h5'
#checkpoint_filepath_best = 'outputs/' + 'best_weights_125extract_depth4_patch32_864_941_932.h5'
model.load_weights(checkpoint_filepath_best)
print('*'*50)
print('Load model: ', checkpoint_filepath_best)
print('*'*50)
#summarize layers
#print(model.summary())
# plot graph
#plot_model(model, to_file='3d_unet.png')
print('-'*30)
print('Fitting model...')
print('-'*30)
#============================================================================
print('training starting..')
log_filename = 'outputs/' + image_type +'_model_train.csv'
csv_log = callbacks.CSVLogger(log_filename, separator=',', append=True)
# early_stopping = callbacks.EarlyStopping(monitor='val_loss', min_delta=0, patience=5, verbose=0, mode='min')
#checkpoint_filepath = 'outputs/' + image_type +"_best_weight_model_{epoch:03d}_{val_loss:.4f}.hdf5"
checkpoint_filepath = 'outputs/' + 'weights.h5'
checkpoint = callbacks.ModelCheckpoint(checkpoint_filepath, monitor='val_loss', verbose=1, save_best_only=True, mode='min')
callbacks_list = [csv_log, checkpoint]
callbacks_list.append(ReduceLROnPlateau(factor=config["learning_rate_drop"], patience=config["patience"],
verbose=True))
callbacks_list.append(EarlyStopping(verbose=True, patience=config["early_stop"]))
#============================================================================
hist = model.fit(imgs_train, imgs_gtruth_train, batch_size=config["batch_size"], nb_epoch=config["n_epochs"], verbose=1, validation_data=(imgs_val,imgs_gtruth_val), shuffle=True, callbacks=callbacks_list) # validation_split=0.2,
model_name = 'outputs/' + image_type + '_model_last'
model.save(model_name) # creates a HDF5 file 'my_model.h5'
if __name__ == '__main__':
resume()