Diff of /3D/model.py [000000] .. [c9b969]

Switch to unified view

a b/3D/model.py
1
2
import numpy as np
3
from keras import backend as K
4
from keras.engine import Input, Model
5
from keras.layers import Conv3D, MaxPooling3D, UpSampling3D, Activation, BatchNormalization, PReLU
6
from keras.optimizers import Adam
7
from functools import partial
8
9
#from metrics import dice_coef_loss, get_label_dice_coefficient_function, dice_coef
10
11
K.set_image_data_format("channels_last")
12
13
try:
14
    from keras.engine import merge
15
except ImportError:
16
    from keras.layers.merge import concatenate
17
18
    
19
    
20
def dice_coef(y_true, y_pred, smooth=1.):
21
    y_true_f = K.flatten(y_true)
22
    y_pred_f = K.flatten(y_pred)
23
    intersection = K.sum(y_true_f * y_pred_f)
24
    return (2. * intersection + smooth) / (K.sum(y_true_f) + K.sum(y_pred_f) + smooth)
25
26
27
#def dice_coef_loss(y_true, y_pred):
28
#    return -dice_coef(y_true, y_pred)
29
30
31
def dice_coef_loss(y_true, y_pred):
32
    distance = 0
33
    for label_index in range(4):
34
        dice_coef_class = dice_coef(y_true[:,:,:,:,label_index], y_pred[:,:,:,:,label_index])
35
        distance = 1 - dice_coef_class + distance
36
    return distance
37
38
39
def label_wise_dice_coefficient(y_true, y_pred, label_index):
40
    return dice_coef(y_true[:,:,:,:,label_index], y_pred[:,:, :,:,label_index])
41
42
43
def get_label_dice_coefficient_function(label_index):
44
    f = partial(label_wise_dice_coefficient, label_index=label_index)
45
    f.__setattr__('__name__', 'label_{0}_dice_coef'.format(label_index))
46
    return f    
47
48
def unet_model_3d(input_shape, pool_size=(2, 2, 2), n_labels=4, initial_learning_rate=0.00001, deconvolution=False,
49
                  depth=3, n_base_filters=16, include_label_wise_dice_coefficients=True, metrics=dice_coef,
50
                  batch_normalization=False):
51
    """
52
    Builds the 3D UNet Keras model.f
53
    :param metrics: List metrics to be calculated during model training (default is dice coefficient).
54
    :param include_label_wise_dice_coefficients: If True and n_labels is greater than 1, model will report the dice
55
    coefficient for each label as metric.
56
    :param n_base_filters: The number of filters that the first layer in the convolution network will have. Following
57
    layers will contain a multiple of this number. Lowering this number will likely reduce the amount of memory required
58
    to train the model.
59
    :param depth: indicates the depth of the U-shape for the model. The greater the depth, the more max pooling
60
    layers will be added to the model. Lowering the depth may reduce the amount of memory required for training.
61
    :param input_shape: Shape of the input data (n_chanels, x_size, y_size, z_size). The x, y, and z sizes must be
62
    divisible by the pool size to the power of the depth of the UNet, that is pool_size^depth.
63
    :param pool_size: Pool size for the max pooling operations.
64
    :param n_labels: Number of binary labels that the model is learning.
65
    :param initial_learning_rate: Initial learning rate for the model. This will be decayed during training.
66
    :param deconvolution: If set to True, will use transpose convolution(deconvolution) instead of up-sampling. This
67
    increases the amount memory required during training.
68
    :return: Untrained 3D UNet Model
69
    """
70
    inputs = Input(input_shape)
71
    current_layer = inputs
72
    levels = list()
73
74
    # add levels with max pooling
75
    for layer_depth in range(depth):
76
        layer1 = create_convolution_block(input_layer=current_layer, n_filters=n_base_filters*(2**layer_depth),
77
                                          batch_normalization=batch_normalization)
78
        layer2 = create_convolution_block(input_layer=layer1, n_filters=n_base_filters*(2**layer_depth)*2,
79
                                          batch_normalization=batch_normalization)
80
        if layer_depth < depth - 1:
81
            current_layer = MaxPooling3D(pool_size=pool_size)(layer2)
82
            levels.append([layer1, layer2, current_layer])
83
        else:
84
            current_layer = layer2
85
            levels.append([layer1, layer2])
86
87
    # add levels with up-convolution or up-sampling
88
    for layer_depth in range(depth-2, -1, -1):
89
        up_convolution = get_up_convolution(pool_size=pool_size, deconvolution=deconvolution, depth=layer_depth,
90
                                            n_filters=current_layer._keras_shape[1],
91
                                            image_shape=input_shape[-3:])(current_layer)
92
        concat = concatenate([up_convolution, levels[layer_depth][1]], axis=-1)
93
        current_layer = create_convolution_block(n_filters=levels[layer_depth][1]._keras_shape[1],
94
                                                 input_layer=concat, batch_normalization=batch_normalization)
95
        current_layer = create_convolution_block(n_filters=levels[layer_depth][1]._keras_shape[1],
96
                                                 input_layer=current_layer,
97
                                                 batch_normalization=batch_normalization)
98
99
    final_convolution = Conv3D(n_labels, (1, 1, 1))(current_layer)
100
    act = Activation('sigmoid')(final_convolution)
101
    model = Model(inputs=inputs, outputs=act)
102
103
    if not isinstance(metrics, list):
104
        metrics = [metrics]
105
106
    if include_label_wise_dice_coefficients and n_labels > 1:
107
        label_wise_dice_metrics = [get_label_dice_coefficient_function(index) for index in range(n_labels)]
108
        if metrics:
109
            metrics = metrics + label_wise_dice_metrics
110
        else:
111
            metrics = label_wise_dice_metrics
112
113
    model.compile(optimizer=Adam(lr=initial_learning_rate), loss=dice_coef_loss, metrics=metrics)
114
    return model
115
116
117
def create_convolution_block(input_layer, n_filters, batch_normalization=False, kernel=(3, 3, 3), activation=None,
118
                             padding='same'):
119
    """
120
121
    :param input_layer:
122
    :param n_filters:
123
    :param batch_normalization:
124
    :param kernel:
125
    :param activation: Keras activation layer to use. (default is 'relu')
126
    :param padding:
127
    :return:
128
    """
129
    layer = Conv3D(n_filters, kernel, padding=padding)(input_layer)
130
    if batch_normalization:
131
        layer = BatchNormalization(axis=1)(layer)
132
    if activation is None:
133
        return Activation('relu')(layer)
134
    else:
135
        return activation()(layer)
136
137
138
def compute_level_output_shape(n_filters, depth, pool_size, image_shape):
139
    """
140
    Each level has a particular output shape based on the number of filters used in that level and the depth or number 
141
    of max pooling operations that have been done on the data at that point.
142
    :param image_shape: shape of the 3d image.
143
    :param pool_size: the pool_size parameter used in the max pooling operation.
144
    :param n_filters: Number of filters used by the last node in a given level.
145
    :param depth: The number of levels down in the U-shaped model a given node is.
146
    :return: 5D vector of the shape of the output node 
147
    """
148
    output_image_shape = np.asarray(np.divide(image_shape, np.power(pool_size, depth)), dtype=np.int32).tolist()
149
    return tuple([None, n_filters] + output_image_shape)
150
151
152
def get_up_convolution(depth, n_filters, pool_size, image_shape, kernel_size=(2, 2, 2), strides=(2, 2, 2),
153
                       deconvolution=False):
154
    if deconvolution:
155
        try:
156
            from keras_contrib.layers import Deconvolution3D
157
        except ImportError:
158
            raise ImportError("Install keras_contrib in order to use deconvolution. Otherwise set deconvolution=False."
159
                              "\nTry: pip install git+https://www.github.com/farizrahman4u/keras-contrib.git")
160
161
        return Deconvolution3D(filters=n_filters, kernel_size=kernel_size,
162
                               output_shape=compute_level_output_shape(n_filters=n_filters, depth=depth,
163
                                                                       pool_size=pool_size, image_shape=image_shape),
164
                               strides=strides, input_shape=compute_level_output_shape(n_filters=n_filters,
165
                                                                                       depth=depth,
166
                                                                                       pool_size=pool_size,
167
                                                                                       image_shape=image_shape))
168
    else:
169
        return UpSampling3D(size=pool_size)