# image shape
VOLUME_ROWS = 256
VOLUME_COLS = 128
VOLUME_DEPS = 256
# number of classes
NUM_CLASSES = 4
# patch extract
PATCH_SIZE = 32
if PATCH_SIZE==64:
EXTRACTTION_STEP = 20
EXTRACTTION_STEP_CSF = 5
elif PATCH_SIZE==32:
EXTRACTTION_STEP = 10
EXTRACTTION_STEP_CSF = 5
elif PATCH_SIZE==16:
EXTRACTTION_STEP = 9
EXTRACTTION_STEP_CSF = 4
# training configs
UNET_MODEL = 0
if UNET_MODEL==0:
MODEL = 'default'
elif UNET_MODEL==1:
MODEL = 'reduced'
elif UNET_MODEL==2:
MODEL = 'extended'
elif UNET_MODEL==3:
MODEL = 'extended2'
BASE = PATCH_SIZE
SMOOTH = 1.
NUM_EPOCHS = 500
BATCH_SIZE = 16
DEPTH = 5
EXTRACTION_RECONSTRUCT_STEP = 32
if PATCH_SIZE==64:
PATIENCE = 10
elif PATCH_SIZE==32:
PATIENCE = 20
elif PATCH_SIZE==16:
PATIENCE = 10
# output
IMAGE_TYPE = '3d_whole_image'