[c9b969]: / 2D / train_main_2d_patch.py

Download this file

297 lines (225 with data), 12.7 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
from __future__ import print_function
# import packages
from functools import partial
import os
import numpy as np
from keras.models import Model
from keras.layers import Input, concatenate, Conv2D, MaxPooling2D, Conv2DTranspose
from keras.optimizers import Adam
from keras import callbacks
from keras import backend as K
from keras.utils import plot_model
# import load data
from data_handling_2d_patch import load_train_data, load_validatation_data
# import configurations
import configs
K.set_image_data_format('channels_last') # TF dimension ordering in this code
image_type = configs.IMAGE_TYPE
# init configs
image_rows = configs.VOLUME_ROWS
image_cols = configs.VOLUME_COLS
image_depth = configs.VOLUME_DEPS
num_classes = configs.NUM_CLASSES
# patch extraction parameters
patch_size = configs.PATCH_SIZE
BASE = configs.BASE
smooth = configs.SMOOTH
nb_epochs = configs.NUM_EPOCHS
batch_size = configs.BATCH_SIZE
unet_model_type = configs.MODEL
PATIENCE = configs.PATIENCE
# compute dsc
def dice_coef(y_true, y_pred, smooth=1.):
y_true_f = K.flatten(y_true)
y_pred_f = K.flatten(y_pred)
intersection = K.sum(y_true_f * y_pred_f)
return (2. * intersection + smooth) / (K.sum(y_true_f) + K.sum(y_pred_f) + smooth)
# proposed loss function
def dice_coef_loss(y_true, y_pred):
distance = 0
for label_index in range(num_classes):
dice_coef_class = dice_coef(y_true[:,:,:,label_index], y_pred[:, :,:,label_index])
distance = 1 - dice_coef_class + distance
return distance
# dsc per class
def label_wise_dice_coefficient(y_true, y_pred, label_index):
return dice_coef(y_true[:,:,:,label_index], y_pred[:, :,:,label_index])
# get label dsc
def get_label_dice_coefficient_function(label_index):
f = partial(label_wise_dice_coefficient, label_index=label_index)
f.__setattr__('__name__', 'label_{0}_dice_coef'.format(label_index))
return f
# 2D U-net depth=5
def get_unet_default():
metrics = dice_coef
include_label_wise_dice_coefficients = True;
inputs = Input((patch_size, patch_size, 1))
conv1 = Conv2D(BASE, (3, 3), activation='relu', padding='same')(inputs)
conv1 = Conv2D(BASE, (3, 3), activation='relu', padding='same')(conv1)
pool1 = MaxPooling2D(pool_size=(2, 2))(conv1)
conv2 = Conv2D(BASE*2, (3, 3), activation='relu', padding='same')(pool1)
conv2 = Conv2D(BASE*2, (3, 3), activation='relu', padding='same')(conv2)
pool2 = MaxPooling2D(pool_size=(2, 2))(conv2)
conv3 = Conv2D(BASE*4, (3, 3), activation='relu', padding='same')(pool2)
conv3 = Conv2D(BASE*4, (3, 3), activation='relu', padding='same')(conv3)
pool3 = MaxPooling2D(pool_size=(2, 2))(conv3)
conv4 = Conv2D(BASE*8, (3, 3), activation='relu', padding='same')(pool3)
conv4 = Conv2D(BASE*8, (3, 3), activation='relu', padding='same')(conv4)
pool4 = MaxPooling2D(pool_size=(2, 2))(conv4)
conv5 = Conv2D(BASE*16, (3, 3), activation='relu', padding='same')(pool4)
conv5 = Conv2D(BASE*16, (3, 3), activation='relu', padding='same')(conv5)
up6 = concatenate([Conv2DTranspose(BASE*8, (2, 2), strides=(2, 2), padding='same')(conv5), conv4], axis=3)
conv6 = Conv2D(BASE*8, (3, 3), activation='relu', padding='same')(up6)
conv6 = Conv2D(BASE*8, (3, 3), activation='relu', padding='same')(conv6)
up7 = concatenate([Conv2DTranspose(BASE*4, (2, 2),strides=(2, 2), padding='same')(conv6), conv3], axis=3)
conv7 = Conv2D(BASE*4, (3, 3), activation='relu', padding='same')(up7)
conv7 = Conv2D(BASE*4, (3, 3), activation='relu', padding='same')(conv7)
up8 = concatenate([Conv2DTranspose(BASE*2, (2, 2), strides=(2, 2), padding='same')(conv7), conv2], axis=3)
conv8 = Conv2D(BASE*2, (3, 3), activation='relu', padding='same')(up8)
conv8 = Conv2D(BASE*2, (3, 3), activation='relu', padding='same')(conv8)
up9 = concatenate([Conv2DTranspose(BASE, (2, 2), strides=(2, 2), padding='same')(conv8), conv1], axis=3)
conv9 = Conv2D(BASE, (3, 3), activation='relu', padding='same')(up9)
conv9 = Conv2D(BASE, (3, 3), activation='relu', padding='same')(conv9)
conv10 = Conv2D(num_classes, (1, 1), activation='sigmoid')(conv9)
model = Model(inputs=[inputs], outputs=[conv10])
if not isinstance(metrics, list):
metrics = [metrics]
if include_label_wise_dice_coefficients and num_classes > 1:
label_wise_dice_metrics = [get_label_dice_coefficient_function(index) for index in range(num_classes)]
if metrics:
metrics = metrics + label_wise_dice_metrics
else:
metrics = label_wise_dice_metrics
model.compile(optimizer=Adam(lr=1e-4), loss=dice_coef_loss, metrics=metrics)
return model
# 2D U-net depth=4
def get_unet_reduced():
metrics = dice_coef
include_label_wise_dice_coefficients = True;
inputs = Input((patch_size, patch_size, 1))
conv1 = Conv2D(BASE, (3, 3), activation='relu', padding='same')(inputs)
conv1 = Conv2D(BASE, (3, 3), activation='relu', padding='same')(conv1)
pool1 = MaxPooling2D(pool_size=(2, 2))(conv1)
conv2 = Conv2D(BASE*2, (3, 3), activation='relu', padding='same')(pool1)
conv2 = Conv2D(BASE*2, (3, 3), activation='relu', padding='same')(conv2)
pool2 = MaxPooling2D(pool_size=(2, 2))(conv2)
conv3 = Conv2D(BASE*4, (3, 3), activation='relu', padding='same')(pool2)
conv3 = Conv2D(BASE*4, (3, 3), activation='relu', padding='same')(conv3)
pool3 = MaxPooling2D(pool_size=(2, 2))(conv3)
conv4 = Conv2D(BASE*8, (3, 3), activation='relu', padding='same')(pool3)
conv4 = Conv2D(BASE*8, (3, 3), activation='relu', padding='same')(conv4)
up7 = concatenate([Conv2DTranspose(BASE*4, (2, 2),strides=(2, 2), padding='same')(conv4), conv3], axis=3)
conv7 = Conv2D(BASE*4, (3, 3), activation='relu', padding='same')(up7)
conv7 = Conv2D(BASE*4, (3, 3), activation='relu', padding='same')(conv7)
up8 = concatenate([Conv2DTranspose(BASE*2, (2, 2), strides=(2, 2), padding='same')(conv7), conv2], axis=3)
conv8 = Conv2D(BASE*2, (3, 3), activation='relu', padding='same')(up8)
conv8 = Conv2D(BASE*2, (3, 3), activation='relu', padding='same')(conv8)
up9 = concatenate([Conv2DTranspose(BASE, (2, 2), strides=(2, 2), padding='same')(conv8), conv1], axis=3)
conv9 = Conv2D(BASE, (3, 3), activation='relu', padding='same')(up9)
conv9 = Conv2D(BASE, (3, 3), activation='relu', padding='same')(conv9)
conv10 = Conv2D(num_classes, (1, 1), activation='sigmoid')(conv9)
model = Model(inputs=[inputs], outputs=[conv10])
#model.compile(optimizer=Adam(lr=1e-5), loss=dice_coef_loss, metrics=[dice_coef])
if not isinstance(metrics, list):
metrics = [metrics]
if include_label_wise_dice_coefficients and num_classes > 1:
label_wise_dice_metrics = [get_label_dice_coefficient_function(index) for index in range(num_classes)]
if metrics:
metrics = metrics + label_wise_dice_metrics
else:
metrics = label_wise_dice_metrics
model.compile(optimizer=Adam(lr=1e-4), loss=dice_coef_loss, metrics=metrics)
return model
# 2D U-net depth=6
def get_unet_extended():
metrics = dice_coef
include_label_wise_dice_coefficients = True;
inputs = Input((patch_size, patch_size, 1))
conv1 = Conv2D(BASE, (3, 3), activation='relu', padding='same')(inputs)
conv1 = Conv2D(BASE, (3, 3), activation='relu', padding='same')(conv1)
pool1 = MaxPooling2D(pool_size=(2, 2))(conv1)
conv2 = Conv2D(BASE*2, (3, 3), activation='relu', padding='same')(pool1)
conv2 = Conv2D(BASE*2, (3, 3), activation='relu', padding='same')(conv2)
pool2 = MaxPooling2D(pool_size=(2, 2))(conv2)
conv3 = Conv2D(BASE*4, (3, 3), activation='relu', padding='same')(pool2)
conv3 = Conv2D(BASE*4, (3, 3), activation='relu', padding='same')(conv3)
pool3 = MaxPooling2D(pool_size=(2, 2))(conv3)
conv4 = Conv2D(BASE*8, (3, 3), activation='relu', padding='same')(pool3)
conv4 = Conv2D(BASE*8, (3, 3), activation='relu', padding='same')(conv4)
pool4 = MaxPooling2D(pool_size=(2, 2))(conv4)
conv5 = Conv2D(BASE*16, (3, 3), activation='relu', padding='same')(pool4)
conv5 = Conv2D(BASE*16, (3, 3), activation='relu', padding='same')(conv5)
pool5 = MaxPooling2D(pool_size=(2, 2))(conv5)
conv5_extend = Conv2D(BASE*32, (3, 3), activation='relu', padding='same')(pool5)
conv5_extend = Conv2D(BASE*32, (3, 3), activation='relu', padding='same')(conv5_extend)
up6_extend = concatenate([Conv2DTranspose(BASE*16, (2, 2), strides=(2, 2), padding='same')(conv5_extend), conv5], axis=3)
conv6_extend = Conv2D(BASE*16, (3, 3), activation='relu', padding='same')(up6_extend)
conv6_extend = Conv2D(BASE*16, (3, 3), activation='relu', padding='same')(conv6_extend)
up6 = concatenate([Conv2DTranspose(BASE*8, (2, 2), strides=(2, 2), padding='same')(conv6_extend), conv4], axis=3)
conv6 = Conv2D(BASE*8, (3, 3), activation='relu', padding='same')(up6)
conv6 = Conv2D(BASE*8, (3, 3), activation='relu', padding='same')(conv6)
up7 = concatenate([Conv2DTranspose(BASE*4, (2, 2),strides=(2, 2), padding='same')(conv6), conv3], axis=3)
conv7 = Conv2D(BASE*4, (3, 3), activation='relu', padding='same')(up7)
conv7 = Conv2D(BASE*4, (3, 3), activation='relu', padding='same')(conv7)
up8 = concatenate([Conv2DTranspose(BASE*2, (2, 2), strides=(2, 2), padding='same')(conv7), conv2], axis=3)
conv8 = Conv2D(BASE*2, (3, 3), activation='relu', padding='same')(up8)
conv8 = Conv2D(BASE*2, (3, 3), activation='relu', padding='same')(conv8)
up9 = concatenate([Conv2DTranspose(BASE, (2, 2), strides=(2, 2), padding='same')(conv8), conv1], axis=3)
conv9 = Conv2D(BASE, (3, 3), activation='relu', padding='same')(up9)
conv9 = Conv2D(BASE, (3, 3), activation='relu', padding='same')(conv9)
conv10 = Conv2D(num_classes, (1, 1), activation='sigmoid')(conv9)
model = Model(inputs=[inputs], outputs=[conv10])
if not isinstance(metrics, list):
metrics = [metrics]
if include_label_wise_dice_coefficients and num_classes > 1:
label_wise_dice_metrics = [get_label_dice_coefficient_function(index) for index in range(num_classes)]
if metrics:
metrics = metrics + label_wise_dice_metrics
else:
metrics = label_wise_dice_metrics
model.compile(optimizer=Adam(lr=1e-4), loss=dice_coef_loss, metrics=metrics)
return model
# train
def train():
print('-'*30)
print('Loading and preprocessing train data...')
print('-'*30)
imgs_train, imgs_gtruth_train = load_train_data()
print('-'*30)
print('Loading and preprocessing validation data...')
print('-'*30)
imgs_val, imgs_gtruth_val = load_validatation_data()
print('-'*30)
print('Creating and compiling model...')
print('-'*30)
if unet_model_type == 'default':
model = get_unet_default()
elif unet_model_type == 'reduced':
model = get_unet_reduced()
elif unet_model_type == 'extended':
model = get_unet_extended()
model.summary()
print('-'*30)
print('Fitting model...')
print('-'*30)
#============================================================================
print('training starting..')
log_filename = 'outputs/' + image_type +'_model_train.csv'
#Callback that streams epoch results to a csv file.
csv_log = callbacks.CSVLogger(log_filename, separator=',', append=True)
early_stopping = callbacks.EarlyStopping(monitor='val_loss', min_delta=0, patience=PATIENCE, verbose=0, mode='min')
#checkpoint_filepath = 'outputs/' + image_type +"_best_weight_model_{epoch:03d}_{val_loss:.4f}.hdf5"
checkpoint_filepath = 'outputs/' + 'weights.h5'
checkpoint = callbacks.ModelCheckpoint(checkpoint_filepath, monitor='val_loss', verbose=1, save_best_only=True, mode='min')
#callbacks_list = [csv_log, checkpoint]
callbacks_list = [csv_log, early_stopping, checkpoint]
#============================================================================
hist = model.fit(imgs_train, imgs_gtruth_train, batch_size=batch_size, nb_epoch=nb_epochs, verbose=1, validation_data=(imgs_val,imgs_gtruth_val), shuffle=True, callbacks=callbacks_list) # validation_split=0.2,
model_name = 'outputs/' + image_type + '_model_last'
model.save(model_name) # creates a HDF5 file 'my_model.h5'
# main
if __name__ == '__main__':
# folder to hold outputs
if 'outputs' not in os.listdir(os.curdir):
os.mkdir('outputs')
train()