import os
import torch
import numpy as np
import math
import random
import cv2 as cv
import nibabel as nib
import torch
from torch.utils import data
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
import pandas as pd
from data_loader.preprocess import readVol,to_uint8,IR_to_uint8,histeq,preprocessed,get_stacked,rotate,calc_crop_region,calc_max_region_list,crop,get_edge
class MR18loader_CV(data.Dataset):
def __init__(self,root='../../data/',val_num=5,is_val=False,
is_transform=False,is_flip=False,is_rotate=False,is_crop=False,is_histeq=False,forest=5):
self.root=root
self.val_num=val_num
self.is_val=is_val
self.is_transform=is_transform
self.is_flip=is_flip
self.is_rotate=is_rotate
self.is_crop=is_crop
self.is_histeq=is_histeq
self.forest=forest
self.n_classes=11
# Back: Background
# GM: Cortical GM(red), Basal ganglia(green)
# WM: WM(yellow), WM lesions(blue)
# CSF: CSF(pink), Ventricles(light blue)
# Back: Cerebellum(white), Brainstem(dark red)
self.color=np.asarray([[0,0,0],[0,0,255],[0,255,0],[0,255,255],[255,0,0],\
[255,0,255],[255,255,0],[255,255,255],[0,0,128],[0,128,0],[128,0,0]]).astype(np.uint8)
# Back , CSF , GM , WM
self.label_test=[0,2,2,3,3,1,1,0,0]
# nii paths
self.T1path=[self.root+'training/'+name+'/pre/reg_T1.nii.gz' for name in ['1','4','5','7','14','070','148']]
self.IRpath=[self.root+'training/'+name+'/pre/IR.nii.gz' for name in ['1','4','5','7','14','070','148']]
self.T2path=[self.root+'training/'+name+'/pre/FLAIR.nii.gz' for name in ['1','4','5','7','14','070','148']]
self.lblpath=[self.root+'training/'+name+'/segm.nii.gz' for name in ['1','4','5','7','14','070','148']]
# val path
self.val_T1path=self.T1path[self.val_num-1]
self.val_IRpath=self.IRpath[self.val_num-1]
self.val_T2path=self.T2path[self.val_num-1]
self.val_lblpath=self.lblpath[self.val_num-1]
# train path
self.train_T1path=[temp for temp in self.T1path if temp not in [self.val_T1path]]
self.train_IRpath=[temp for temp in self.IRpath if temp not in [self.val_IRpath]]
self.train_T2path=[temp for temp in self.T2path if temp not in [self.val_T2path]]
self.train_lblpath=[temp for temp in self.lblpath if temp not in [self.val_lblpath]]
if self.is_val==False:
print('training data')
T1_nii=[to_uint8(readVol(path)) for path in self.train_T1path]
IR_nii=[IR_to_uint8(readVol(path)) for path in self.train_IRpath]
T2_nii=[to_uint8(readVol(path)) for path in self.train_T2path]
lbl_nii=[readVol(path) for path in self.train_lblpath]
if self.is_flip:
vol_num=len(T1_nii)
for nums in range(vol_num):
T1_nii.append(np.array([cv.flip(slice_,1) for slice_ in T1_nii[nums]]))
IR_nii.append(np.array([cv.flip(slice_,1) for slice_ in IR_nii[nums]]))
T2_nii.append(np.array([cv.flip(slice_,1) for slice_ in T2_nii[nums]]))
lbl_nii.append(np.array([cv.flip(slice_,1) for slice_ in lbl_nii[nums]]))
if self.is_histeq:
print('hist equalizing......')
T1_nii=[histeq(vol) for vol in T1_nii]
IR_nii=[vol for vol in IR_nii]
T2_nii=[vol for vol in T2_nii]
print('get stacking......')
T1_stack_lists=[get_stacked(vol,self.forest) for vol in T1_nii]
IR_stack_lists=[get_stacked(vol,self.forest) for vol in IR_nii]
T2_stack_lists=[get_stacked(vol,self.forest) for vol in T2_nii]
lbl_stack_lists=[get_stacked(vol,self.forest) for vol in lbl_nii]
if self.is_rotate:
print('rotating......')
angle_list=[5,-5,10,-10,15,-15]
sample_num=len(T1_stack_lists)
for angle in angle_list:
for sample_index in range(sample_num):
T1_stack_lists.append(rotate(T1_stack_lists[sample_index],angle,interp=cv.INTER_CUBIC).copy())
IR_stack_lists.append(rotate(IR_stack_lists[sample_index],angle,interp=cv.INTER_CUBIC).copy())
T2_stack_lists.append(rotate(T2_stack_lists[sample_index],angle,interp=cv.INTER_CUBIC).copy())
lbl_stack_lists.append(rotate(lbl_stack_lists[sample_index],angle,interp=cv.INTER_NEAREST).copy())
if self.is_crop:
print('cropping......')
region_lists=[calc_max_region_list(calc_crop_region(T1_stack_list,50,5),self.forest) for T1_stack_list in T1_stack_lists]
self.region_lists=region_lists
T1_stack_lists=[crop(stack_list,region_lists[list_index]) for list_index,stack_list in enumerate(T1_stack_lists)]
IR_stack_lists=[crop(stack_list,region_lists[list_index]) for list_index,stack_list in enumerate(IR_stack_lists)]
T2_stack_lists=[crop(stack_list,region_lists[list_index]) for list_index,stack_list in enumerate(T2_stack_lists)]
lbl_stack_lists=[crop(stack_list,region_lists[list_index]) for list_index,stack_list in enumerate(lbl_stack_lists)]
'''
print('len=',len(T1_stack_lists))
T1_path_list=[]
IR_path_list=[]
T2_path_list=[]
lbl_path_list=[]
range_list=[]
name=['1','4','5','7','14','070','148']
f_n=['n','f']
ang=['0','5','-5','10','-10','15','-15']
save_path='../../../../data/'
for sam_i,sample in enumerate(T1_stack_lists):
for img_j,img in enumerate(sample):
T1_path_list.append('imgs/'+'T1/'+'{}_{}_{}_{}.png'.format(name[sam_i%7],f_n[(int(sam_i/7))%2],ang[int(sam_i/14)],img_j))
path=save_path+'imgs/'+'T1/'+'{}_{}_{}_{}.png'.format(name[sam_i%7],f_n[(int(sam_i/7))%2],ang[int(sam_i/14)],img_j)
cv.imwrite(path,img)
for sam_i,sample in enumerate(IR_stack_lists):
for img_j,img in enumerate(sample):
IR_path_list.append('imgs/'+'IR/'+'{}_{}_{}_{}.png'.format(name[sam_i%7],f_n[(int(sam_i/7))%2],ang[int(sam_i/14)],img_j))
path=save_path+'imgs/'+'IR/'+'{}_{}_{}_{}.png'.format(name[sam_i%7],f_n[(int(sam_i/7))%2],ang[int(sam_i/14)],img_j)
cv.imwrite(path,img)
for sam_i,sample in enumerate(T2_stack_lists):
for img_j,img in enumerate(sample):
T2_path_list.append('imgs/'+'T2/'+'{}_{}_{}_{}.png'.format(name[sam_i%7],f_n[(int(sam_i/7))%2],ang[int(sam_i/14)],img_j))
path=save_path+'imgs/'+'T2/'+'{}_{}_{}_{}.png'.format(name[sam_i%7],f_n[(int(sam_i/7))%2],ang[int(sam_i/14)],img_j)
cv.imwrite(path,img)
for sam_i,sample in enumerate(lbl_stack_lists):
for img_j,img in enumerate(sample):
lbl_path_list.append('lbls/'+'{}_{}_{}_{}.png'.format(name[sam_i%7],f_n[(int(sam_i/7))%2],ang[int(sam_i/14)],img_j))
path=save_path+'lbls/'+'{}_{}_{}_{}.png'.format(name[sam_i%7],f_n[(int(sam_i/7))%2],ang[int(sam_i/14)],img_j)
print(img.shape)
cv.imwrite(path,img)
for sam_i,sample in enumerate(region_lists):
for img_j,img in enumerate(sample):
range_list.append(img)
range_array=np.array(range_list)
y_min_list=range_array[:,0]
y_max_list=range_array[:,1]
x_min_list=range_array[:,2]
x_max_list=range_array[:,3]
df=pd.DataFrame({ 'T1':T1_path_list,'IR':IR_path_list,'T2':T2_path_list,'lbl':lbl_path_list,
'y_min':y_min_list,'y_max':y_max_list,'x_min':x_min_list,'x_max':x_max_list})
print(df)
df.to_csv("index.csv")
'''
# get means
T1mean,IRmean,T2mean=0.0,0.0,0.0
for samples in T1_stack_lists:
for stacks in samples:
T1mean=T1mean+np.mean(stacks)
T1mean=T1mean/(len(T1_stack_lists)*len(T1_stack_lists[0]))
print('T1 mean = ',T1mean)
self.T1mean=T1mean
for samples in IR_stack_lists:
for stacks in samples:
IRmean=IRmean+np.mean(stacks)
IRmean=IRmean/(len(IR_stack_lists)*len(IR_stack_lists[0]))
print('IR mean = ',IRmean)
self.IRmean=IRmean
for samples in T2_stack_lists:
for stacks in samples:
T2mean=T2mean+np.mean(stacks)
T2mean=T2mean/(len(T2_stack_lists)*len(T2_stack_lists[0]))
print('T2 mean = ',T2mean)
self.T2mean=T2mean
# get edegs
print('getting edges')
edge_stack_lists=[]
for samples in lbl_stack_lists:
edge_stack_lists.append(get_edge(samples))
# transform
if self.is_transform:
print('transforming')
for sample_index in range(len(T1_stack_lists)):
for stack_index in range(len(T1_stack_lists[0])):
T1_stack_lists[sample_index][stack_index], \
IR_stack_lists[sample_index][stack_index], \
T2_stack_lists[sample_index][stack_index], \
lbl_stack_lists[sample_index][stack_index], \
edge_stack_lists[sample_index][stack_index]=\
self.transform( \
T1_stack_lists[sample_index][stack_index], \
IR_stack_lists[sample_index][stack_index], \
T2_stack_lists[sample_index][stack_index], \
lbl_stack_lists[sample_index][stack_index], \
edge_stack_lists[sample_index][stack_index])
else:
print('validating data')
T1_nii=to_uint8(readVol(self.val_T1path))
IR_nii=IR_to_uint8(readVol(self.val_IRpath))
T2_nii=to_uint8(readVol(self.val_T2path))
lbl_nii=readVol(self.val_lblpath)
if self.is_histeq:
print('hist equalizing......')
T1_nii=histeq(T1_nii)
IR_nii=IR_nii
T1_nii=T1_nii
print('get stacking......')
T1_stack_lists=get_stacked(T1_nii,self.forest)
IR_stack_lists=get_stacked(IR_nii,self.forest)
T2_stack_lists=get_stacked(T2_nii,self.forest)
lbl_stack_lists=get_stacked(lbl_nii,self.forest)
if self.is_crop:
print('cropping......')
region_lists=calc_max_region_list(calc_crop_region(T1_stack_lists,50,5),self.forest)
self.region_lists=region_lists
T1_stack_lists=crop(T1_stack_lists,region_lists)
IR_stack_lists=crop(IR_stack_lists,region_lists)
T2_stack_lists=crop(T2_stack_lists,region_lists)
lbl_stack_lists=crop(lbl_stack_lists,region_lists)
# get means
T1mean,IRmean,T2mean=0.0,0.0,0.0
for stacks in T1_stack_lists:
T1mean=T1mean+np.mean(stacks)
T1mean=T1mean/(len(T1_stack_lists))
print('T1 mean = ',T1mean)
self.T1mean=T1mean
for stacks in IR_stack_lists:
IRmean=IRmean+np.mean(stacks)
IRmean=IRmean/(len(IR_stack_lists))
print('IR mean = ',IRmean)
self.IRmean=IRmean
for stacks in T2_stack_lists:
T2mean=T2mean+np.mean(stacks)
T2mean=T2mean/(len(T2_stack_lists))
print('T2 mean = ',T2mean)
self.T2mean=T2mean
# get edges
print('getting edges')
edge_stack_lists=get_edge(lbl_stack_lists)
# transform
if self.is_transform:
print('transforming')
for stack_index in range(len(T1_stack_lists)):
T1_stack_lists[stack_index], \
IR_stack_lists[stack_index], \
T2_stack_lists[stack_index], \
lbl_stack_lists[stack_index], \
edge_stack_lists[stack_index]=\
self.transform( \
T1_stack_lists[stack_index], \
IR_stack_lists[stack_index], \
T2_stack_lists[stack_index], \
lbl_stack_lists[stack_index], \
edge_stack_lists[stack_index])
# data ready
self.T1_stack_lists=T1_stack_lists
self.IR_stack_lists=IR_stack_lists
self.T2_stack_lists=T2_stack_lists
self.lbl_stack_lists=lbl_stack_lists
self.edge_stack_lists=edge_stack_lists
def __len__(self):
return (self.is_val)and(48)or(48*6*7*2)
def __getitem__(self,index):
# get train or validation data
if self.is_val==False:
set_index=range(len(self.T1_stack_lists))
img_index=range(len(self.T1_stack_lists[0]))
return \
self.region_lists[set_index[int(index/48)]][img_index[int(index%48)]], \
self.T1_stack_lists[set_index[int(index/48)]][img_index[int(index%48)]],\
self.IR_stack_lists[set_index[int(index/48)]][img_index[int(index%48)]],\
self.T2_stack_lists[set_index[int(index/48)]][img_index[int(index%48)]],\
self.lbl_stack_lists[set_index[int(index/48)]][img_index[int(index%48)]]
#self.edge_stack_lists[set_index[int(index/48)]][img_index[int(index%48)]]
else:
img_index=range(len(self.T1_stack_lists))
return \
self.region_lists[img_index[int(index)]], \
self.T1_stack_lists[img_index[int(index)]], \
self.IR_stack_lists[img_index[int(index)]], \
self.T2_stack_lists[img_index[int(index)]], \
self.lbl_stack_lists[img_index[int(index)]]
#self.edge_stack_lists[img_index[int(index)]]
def transform(self,imgT1,imgIR,imgT2,lbl,edge):
imgT1=torch.from_numpy((imgT1.transpose(2,0,1).astype(np.float)-self.T1mean)/255.0).float()
imgIR=torch.from_numpy((imgIR.transpose(2,0,1).astype(np.float)-self.IRmean)/255.0).float()
imgT2=torch.from_numpy((imgT2.transpose(2,0,1).astype(np.float)-self.T2mean)/255.0).float()
lbl=torch.from_numpy(lbl.transpose(2,0,1)).long()
edge=torch.from_numpy(edge.transpose(2,0,1)/255).float()
return imgT1,imgIR,imgT2,lbl,edge
def decode_segmap(self,label_mask):
r,g,b=label_mask.copy(),label_mask.copy(),label_mask.copy()
for ll in range(0,self.n_classes):
r[label_mask==ll]=self.color[ll,2]
g[label_mask==ll]=self.color[ll,1]
b[label_mask==ll]=self.color[ll,0]
rgb=np.zeros((label_mask.shape[0],label_mask.shape[1],3))
rgb[:,:,0],rgb[:,:,1],rgb[:,:,2]=r,g,b
return rgb
def lbl_totest(self,pred):
pred_test=np.zeros((pred.shape[0],pred.shape[1]),np.uint8)
for ll in range(9):
pred_test[pred==ll]=self.label_test[ll]
return pred_test
if __name__=='__main__':
path='../../../../data/'
MRloader=MR18loader_CV(root=path,val_num=7,is_val=False,is_transform=True,is_flip=True,is_rotate=True,is_crop=True,is_histeq=True,forest=3)
loader=data.DataLoader(MRloader, batch_size=1, num_workers=1, shuffle=True)
for i,(regions,T1s,IRs,T2s,lbls) in enumerate(MRloader):
print(i)
#print(T1s.shape)
#print(regions)
#print(lbls.min())
#print(lbls.max())
#cv.imwrite(str(i)+'.png',T1s[:,:,1])
#print(region)
#print(imgT1.shape)
#print(imgIR.shape)
#print(imgT2.shape)
#print(lbl.shape)
#print('[{},{},{},{}]'.format(imgT1[0,2,40,40],imgIR[0,2,40,40],imgT2[0,2,40,40],lbl[0,2,40,40]))
#cv.imwrite('T1-'+str(i)+'.png',imgT1[2])
#cv.imwrite('IR-'+str(i)+'.png',imgIR[2])
#cv.imwrite('T2-'+str(i)+'.png',imgT2[2])
#cv.imwrite('lbl-'+str(i)+'.png',MRloader.decode_segmap(lbl[2]))