[8ff467]: / data_loader / data_loader_18.py

Download this file

338 lines (307 with data), 16.7 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
import os
import torch
import numpy as np
import math
import random
import cv2 as cv
import nibabel as nib
import torch
from torch.utils import data
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
import pandas as pd
from data_loader.preprocess import readVol,to_uint8,IR_to_uint8,histeq,preprocessed,get_stacked,rotate,calc_crop_region,calc_max_region_list,crop,get_edge
class MR18loader_CV(data.Dataset):
def __init__(self,root='../../data/',val_num=5,is_val=False,
is_transform=False,is_flip=False,is_rotate=False,is_crop=False,is_histeq=False,forest=5):
self.root=root
self.val_num=val_num
self.is_val=is_val
self.is_transform=is_transform
self.is_flip=is_flip
self.is_rotate=is_rotate
self.is_crop=is_crop
self.is_histeq=is_histeq
self.forest=forest
self.n_classes=11
# Back: Background
# GM: Cortical GM(red), Basal ganglia(green)
# WM: WM(yellow), WM lesions(blue)
# CSF: CSF(pink), Ventricles(light blue)
# Back: Cerebellum(white), Brainstem(dark red)
self.color=np.asarray([[0,0,0],[0,0,255],[0,255,0],[0,255,255],[255,0,0],\
[255,0,255],[255,255,0],[255,255,255],[0,0,128],[0,128,0],[128,0,0]]).astype(np.uint8)
# Back , CSF , GM , WM
self.label_test=[0,2,2,3,3,1,1,0,0]
# nii paths
self.T1path=[self.root+'training/'+name+'/pre/reg_T1.nii.gz' for name in ['1','4','5','7','14','070','148']]
self.IRpath=[self.root+'training/'+name+'/pre/IR.nii.gz' for name in ['1','4','5','7','14','070','148']]
self.T2path=[self.root+'training/'+name+'/pre/FLAIR.nii.gz' for name in ['1','4','5','7','14','070','148']]
self.lblpath=[self.root+'training/'+name+'/segm.nii.gz' for name in ['1','4','5','7','14','070','148']]
# val path
self.val_T1path=self.T1path[self.val_num-1]
self.val_IRpath=self.IRpath[self.val_num-1]
self.val_T2path=self.T2path[self.val_num-1]
self.val_lblpath=self.lblpath[self.val_num-1]
# train path
self.train_T1path=[temp for temp in self.T1path if temp not in [self.val_T1path]]
self.train_IRpath=[temp for temp in self.IRpath if temp not in [self.val_IRpath]]
self.train_T2path=[temp for temp in self.T2path if temp not in [self.val_T2path]]
self.train_lblpath=[temp for temp in self.lblpath if temp not in [self.val_lblpath]]
if self.is_val==False:
print('training data')
T1_nii=[to_uint8(readVol(path)) for path in self.train_T1path]
IR_nii=[IR_to_uint8(readVol(path)) for path in self.train_IRpath]
T2_nii=[to_uint8(readVol(path)) for path in self.train_T2path]
lbl_nii=[readVol(path) for path in self.train_lblpath]
if self.is_flip:
vol_num=len(T1_nii)
for nums in range(vol_num):
T1_nii.append(np.array([cv.flip(slice_,1) for slice_ in T1_nii[nums]]))
IR_nii.append(np.array([cv.flip(slice_,1) for slice_ in IR_nii[nums]]))
T2_nii.append(np.array([cv.flip(slice_,1) for slice_ in T2_nii[nums]]))
lbl_nii.append(np.array([cv.flip(slice_,1) for slice_ in lbl_nii[nums]]))
if self.is_histeq:
print('hist equalizing......')
T1_nii=[histeq(vol) for vol in T1_nii]
IR_nii=[vol for vol in IR_nii]
T2_nii=[vol for vol in T2_nii]
print('get stacking......')
T1_stack_lists=[get_stacked(vol,self.forest) for vol in T1_nii]
IR_stack_lists=[get_stacked(vol,self.forest) for vol in IR_nii]
T2_stack_lists=[get_stacked(vol,self.forest) for vol in T2_nii]
lbl_stack_lists=[get_stacked(vol,self.forest) for vol in lbl_nii]
if self.is_rotate:
print('rotating......')
angle_list=[5,-5,10,-10,15,-15]
sample_num=len(T1_stack_lists)
for angle in angle_list:
for sample_index in range(sample_num):
T1_stack_lists.append(rotate(T1_stack_lists[sample_index],angle,interp=cv.INTER_CUBIC).copy())
IR_stack_lists.append(rotate(IR_stack_lists[sample_index],angle,interp=cv.INTER_CUBIC).copy())
T2_stack_lists.append(rotate(T2_stack_lists[sample_index],angle,interp=cv.INTER_CUBIC).copy())
lbl_stack_lists.append(rotate(lbl_stack_lists[sample_index],angle,interp=cv.INTER_NEAREST).copy())
if self.is_crop:
print('cropping......')
region_lists=[calc_max_region_list(calc_crop_region(T1_stack_list,50,5),self.forest) for T1_stack_list in T1_stack_lists]
self.region_lists=region_lists
T1_stack_lists=[crop(stack_list,region_lists[list_index]) for list_index,stack_list in enumerate(T1_stack_lists)]
IR_stack_lists=[crop(stack_list,region_lists[list_index]) for list_index,stack_list in enumerate(IR_stack_lists)]
T2_stack_lists=[crop(stack_list,region_lists[list_index]) for list_index,stack_list in enumerate(T2_stack_lists)]
lbl_stack_lists=[crop(stack_list,region_lists[list_index]) for list_index,stack_list in enumerate(lbl_stack_lists)]
'''
print('len=',len(T1_stack_lists))
T1_path_list=[]
IR_path_list=[]
T2_path_list=[]
lbl_path_list=[]
range_list=[]
name=['1','4','5','7','14','070','148']
f_n=['n','f']
ang=['0','5','-5','10','-10','15','-15']
save_path='../../../../data/'
for sam_i,sample in enumerate(T1_stack_lists):
for img_j,img in enumerate(sample):
T1_path_list.append('imgs/'+'T1/'+'{}_{}_{}_{}.png'.format(name[sam_i%7],f_n[(int(sam_i/7))%2],ang[int(sam_i/14)],img_j))
path=save_path+'imgs/'+'T1/'+'{}_{}_{}_{}.png'.format(name[sam_i%7],f_n[(int(sam_i/7))%2],ang[int(sam_i/14)],img_j)
cv.imwrite(path,img)
for sam_i,sample in enumerate(IR_stack_lists):
for img_j,img in enumerate(sample):
IR_path_list.append('imgs/'+'IR/'+'{}_{}_{}_{}.png'.format(name[sam_i%7],f_n[(int(sam_i/7))%2],ang[int(sam_i/14)],img_j))
path=save_path+'imgs/'+'IR/'+'{}_{}_{}_{}.png'.format(name[sam_i%7],f_n[(int(sam_i/7))%2],ang[int(sam_i/14)],img_j)
cv.imwrite(path,img)
for sam_i,sample in enumerate(T2_stack_lists):
for img_j,img in enumerate(sample):
T2_path_list.append('imgs/'+'T2/'+'{}_{}_{}_{}.png'.format(name[sam_i%7],f_n[(int(sam_i/7))%2],ang[int(sam_i/14)],img_j))
path=save_path+'imgs/'+'T2/'+'{}_{}_{}_{}.png'.format(name[sam_i%7],f_n[(int(sam_i/7))%2],ang[int(sam_i/14)],img_j)
cv.imwrite(path,img)
for sam_i,sample in enumerate(lbl_stack_lists):
for img_j,img in enumerate(sample):
lbl_path_list.append('lbls/'+'{}_{}_{}_{}.png'.format(name[sam_i%7],f_n[(int(sam_i/7))%2],ang[int(sam_i/14)],img_j))
path=save_path+'lbls/'+'{}_{}_{}_{}.png'.format(name[sam_i%7],f_n[(int(sam_i/7))%2],ang[int(sam_i/14)],img_j)
print(img.shape)
cv.imwrite(path,img)
for sam_i,sample in enumerate(region_lists):
for img_j,img in enumerate(sample):
range_list.append(img)
range_array=np.array(range_list)
y_min_list=range_array[:,0]
y_max_list=range_array[:,1]
x_min_list=range_array[:,2]
x_max_list=range_array[:,3]
df=pd.DataFrame({ 'T1':T1_path_list,'IR':IR_path_list,'T2':T2_path_list,'lbl':lbl_path_list,
'y_min':y_min_list,'y_max':y_max_list,'x_min':x_min_list,'x_max':x_max_list})
print(df)
df.to_csv("index.csv")
'''
# get means
T1mean,IRmean,T2mean=0.0,0.0,0.0
for samples in T1_stack_lists:
for stacks in samples:
T1mean=T1mean+np.mean(stacks)
T1mean=T1mean/(len(T1_stack_lists)*len(T1_stack_lists[0]))
print('T1 mean = ',T1mean)
self.T1mean=T1mean
for samples in IR_stack_lists:
for stacks in samples:
IRmean=IRmean+np.mean(stacks)
IRmean=IRmean/(len(IR_stack_lists)*len(IR_stack_lists[0]))
print('IR mean = ',IRmean)
self.IRmean=IRmean
for samples in T2_stack_lists:
for stacks in samples:
T2mean=T2mean+np.mean(stacks)
T2mean=T2mean/(len(T2_stack_lists)*len(T2_stack_lists[0]))
print('T2 mean = ',T2mean)
self.T2mean=T2mean
# get edegs
print('getting edges')
edge_stack_lists=[]
for samples in lbl_stack_lists:
edge_stack_lists.append(get_edge(samples))
# transform
if self.is_transform:
print('transforming')
for sample_index in range(len(T1_stack_lists)):
for stack_index in range(len(T1_stack_lists[0])):
T1_stack_lists[sample_index][stack_index], \
IR_stack_lists[sample_index][stack_index], \
T2_stack_lists[sample_index][stack_index], \
lbl_stack_lists[sample_index][stack_index], \
edge_stack_lists[sample_index][stack_index]=\
self.transform( \
T1_stack_lists[sample_index][stack_index], \
IR_stack_lists[sample_index][stack_index], \
T2_stack_lists[sample_index][stack_index], \
lbl_stack_lists[sample_index][stack_index], \
edge_stack_lists[sample_index][stack_index])
else:
print('validating data')
T1_nii=to_uint8(readVol(self.val_T1path))
IR_nii=IR_to_uint8(readVol(self.val_IRpath))
T2_nii=to_uint8(readVol(self.val_T2path))
lbl_nii=readVol(self.val_lblpath)
if self.is_histeq:
print('hist equalizing......')
T1_nii=histeq(T1_nii)
IR_nii=IR_nii
T1_nii=T1_nii
print('get stacking......')
T1_stack_lists=get_stacked(T1_nii,self.forest)
IR_stack_lists=get_stacked(IR_nii,self.forest)
T2_stack_lists=get_stacked(T2_nii,self.forest)
lbl_stack_lists=get_stacked(lbl_nii,self.forest)
if self.is_crop:
print('cropping......')
region_lists=calc_max_region_list(calc_crop_region(T1_stack_lists,50,5),self.forest)
self.region_lists=region_lists
T1_stack_lists=crop(T1_stack_lists,region_lists)
IR_stack_lists=crop(IR_stack_lists,region_lists)
T2_stack_lists=crop(T2_stack_lists,region_lists)
lbl_stack_lists=crop(lbl_stack_lists,region_lists)
# get means
T1mean,IRmean,T2mean=0.0,0.0,0.0
for stacks in T1_stack_lists:
T1mean=T1mean+np.mean(stacks)
T1mean=T1mean/(len(T1_stack_lists))
print('T1 mean = ',T1mean)
self.T1mean=T1mean
for stacks in IR_stack_lists:
IRmean=IRmean+np.mean(stacks)
IRmean=IRmean/(len(IR_stack_lists))
print('IR mean = ',IRmean)
self.IRmean=IRmean
for stacks in T2_stack_lists:
T2mean=T2mean+np.mean(stacks)
T2mean=T2mean/(len(T2_stack_lists))
print('T2 mean = ',T2mean)
self.T2mean=T2mean
# get edges
print('getting edges')
edge_stack_lists=get_edge(lbl_stack_lists)
# transform
if self.is_transform:
print('transforming')
for stack_index in range(len(T1_stack_lists)):
T1_stack_lists[stack_index], \
IR_stack_lists[stack_index], \
T2_stack_lists[stack_index], \
lbl_stack_lists[stack_index], \
edge_stack_lists[stack_index]=\
self.transform( \
T1_stack_lists[stack_index], \
IR_stack_lists[stack_index], \
T2_stack_lists[stack_index], \
lbl_stack_lists[stack_index], \
edge_stack_lists[stack_index])
# data ready
self.T1_stack_lists=T1_stack_lists
self.IR_stack_lists=IR_stack_lists
self.T2_stack_lists=T2_stack_lists
self.lbl_stack_lists=lbl_stack_lists
self.edge_stack_lists=edge_stack_lists
def __len__(self):
return (self.is_val)and(48)or(48*6*7*2)
def __getitem__(self,index):
# get train or validation data
if self.is_val==False:
set_index=range(len(self.T1_stack_lists))
img_index=range(len(self.T1_stack_lists[0]))
return \
self.region_lists[set_index[int(index/48)]][img_index[int(index%48)]], \
self.T1_stack_lists[set_index[int(index/48)]][img_index[int(index%48)]],\
self.IR_stack_lists[set_index[int(index/48)]][img_index[int(index%48)]],\
self.T2_stack_lists[set_index[int(index/48)]][img_index[int(index%48)]],\
self.lbl_stack_lists[set_index[int(index/48)]][img_index[int(index%48)]]
#self.edge_stack_lists[set_index[int(index/48)]][img_index[int(index%48)]]
else:
img_index=range(len(self.T1_stack_lists))
return \
self.region_lists[img_index[int(index)]], \
self.T1_stack_lists[img_index[int(index)]], \
self.IR_stack_lists[img_index[int(index)]], \
self.T2_stack_lists[img_index[int(index)]], \
self.lbl_stack_lists[img_index[int(index)]]
#self.edge_stack_lists[img_index[int(index)]]
def transform(self,imgT1,imgIR,imgT2,lbl,edge):
imgT1=torch.from_numpy((imgT1.transpose(2,0,1).astype(np.float)-self.T1mean)/255.0).float()
imgIR=torch.from_numpy((imgIR.transpose(2,0,1).astype(np.float)-self.IRmean)/255.0).float()
imgT2=torch.from_numpy((imgT2.transpose(2,0,1).astype(np.float)-self.T2mean)/255.0).float()
lbl=torch.from_numpy(lbl.transpose(2,0,1)).long()
edge=torch.from_numpy(edge.transpose(2,0,1)/255).float()
return imgT1,imgIR,imgT2,lbl,edge
def decode_segmap(self,label_mask):
r,g,b=label_mask.copy(),label_mask.copy(),label_mask.copy()
for ll in range(0,self.n_classes):
r[label_mask==ll]=self.color[ll,2]
g[label_mask==ll]=self.color[ll,1]
b[label_mask==ll]=self.color[ll,0]
rgb=np.zeros((label_mask.shape[0],label_mask.shape[1],3))
rgb[:,:,0],rgb[:,:,1],rgb[:,:,2]=r,g,b
return rgb
def lbl_totest(self,pred):
pred_test=np.zeros((pred.shape[0],pred.shape[1]),np.uint8)
for ll in range(9):
pred_test[pred==ll]=self.label_test[ll]
return pred_test
if __name__=='__main__':
path='../../../../data/'
MRloader=MR18loader_CV(root=path,val_num=7,is_val=False,is_transform=True,is_flip=True,is_rotate=True,is_crop=True,is_histeq=True,forest=3)
loader=data.DataLoader(MRloader, batch_size=1, num_workers=1, shuffle=True)
for i,(regions,T1s,IRs,T2s,lbls) in enumerate(MRloader):
print(i)
#print(T1s.shape)
#print(regions)
#print(lbls.min())
#print(lbls.max())
#cv.imwrite(str(i)+'.png',T1s[:,:,1])
#print(region)
#print(imgT1.shape)
#print(imgIR.shape)
#print(imgT2.shape)
#print(lbl.shape)
#print('[{},{},{},{}]'.format(imgT1[0,2,40,40],imgIR[0,2,40,40],imgT2[0,2,40,40],lbl[0,2,40,40]))
#cv.imwrite('T1-'+str(i)+'.png',imgT1[2])
#cv.imwrite('IR-'+str(i)+'.png',imgIR[2])
#cv.imwrite('T2-'+str(i)+'.png',imgT2[2])
#cv.imwrite('lbl-'+str(i)+'.png',MRloader.decode_segmap(lbl[2]))