|
a |
|
b/data_loader/data_loader_18.py |
|
|
1 |
import os |
|
|
2 |
import torch |
|
|
3 |
import numpy as np |
|
|
4 |
import math |
|
|
5 |
import random |
|
|
6 |
import cv2 as cv |
|
|
7 |
import nibabel as nib |
|
|
8 |
import torch |
|
|
9 |
from torch.utils import data |
|
|
10 |
import torchvision.transforms as transforms |
|
|
11 |
import matplotlib.pyplot as plt |
|
|
12 |
import pandas as pd |
|
|
13 |
|
|
|
14 |
from data_loader.preprocess import readVol,to_uint8,IR_to_uint8,histeq,preprocessed,get_stacked,rotate,calc_crop_region,calc_max_region_list,crop,get_edge |
|
|
15 |
|
|
|
16 |
class MR18loader_CV(data.Dataset): |
|
|
17 |
def __init__(self,root='../../data/',val_num=5,is_val=False, |
|
|
18 |
is_transform=False,is_flip=False,is_rotate=False,is_crop=False,is_histeq=False,forest=5): |
|
|
19 |
self.root=root |
|
|
20 |
self.val_num=val_num |
|
|
21 |
self.is_val=is_val |
|
|
22 |
self.is_transform=is_transform |
|
|
23 |
self.is_flip=is_flip |
|
|
24 |
self.is_rotate=is_rotate |
|
|
25 |
self.is_crop=is_crop |
|
|
26 |
self.is_histeq=is_histeq |
|
|
27 |
self.forest=forest |
|
|
28 |
self.n_classes=11 |
|
|
29 |
# Back: Background |
|
|
30 |
# GM: Cortical GM(red), Basal ganglia(green) |
|
|
31 |
# WM: WM(yellow), WM lesions(blue) |
|
|
32 |
# CSF: CSF(pink), Ventricles(light blue) |
|
|
33 |
# Back: Cerebellum(white), Brainstem(dark red) |
|
|
34 |
self.color=np.asarray([[0,0,0],[0,0,255],[0,255,0],[0,255,255],[255,0,0],\ |
|
|
35 |
[255,0,255],[255,255,0],[255,255,255],[0,0,128],[0,128,0],[128,0,0]]).astype(np.uint8) |
|
|
36 |
# Back , CSF , GM , WM |
|
|
37 |
self.label_test=[0,2,2,3,3,1,1,0,0] |
|
|
38 |
# nii paths |
|
|
39 |
self.T1path=[self.root+'training/'+name+'/pre/reg_T1.nii.gz' for name in ['1','4','5','7','14','070','148']] |
|
|
40 |
self.IRpath=[self.root+'training/'+name+'/pre/IR.nii.gz' for name in ['1','4','5','7','14','070','148']] |
|
|
41 |
self.T2path=[self.root+'training/'+name+'/pre/FLAIR.nii.gz' for name in ['1','4','5','7','14','070','148']] |
|
|
42 |
self.lblpath=[self.root+'training/'+name+'/segm.nii.gz' for name in ['1','4','5','7','14','070','148']] |
|
|
43 |
|
|
|
44 |
# val path |
|
|
45 |
self.val_T1path=self.T1path[self.val_num-1] |
|
|
46 |
self.val_IRpath=self.IRpath[self.val_num-1] |
|
|
47 |
self.val_T2path=self.T2path[self.val_num-1] |
|
|
48 |
self.val_lblpath=self.lblpath[self.val_num-1] |
|
|
49 |
# train path |
|
|
50 |
self.train_T1path=[temp for temp in self.T1path if temp not in [self.val_T1path]] |
|
|
51 |
self.train_IRpath=[temp for temp in self.IRpath if temp not in [self.val_IRpath]] |
|
|
52 |
self.train_T2path=[temp for temp in self.T2path if temp not in [self.val_T2path]] |
|
|
53 |
self.train_lblpath=[temp for temp in self.lblpath if temp not in [self.val_lblpath]] |
|
|
54 |
|
|
|
55 |
if self.is_val==False: |
|
|
56 |
print('training data') |
|
|
57 |
T1_nii=[to_uint8(readVol(path)) for path in self.train_T1path] |
|
|
58 |
IR_nii=[IR_to_uint8(readVol(path)) for path in self.train_IRpath] |
|
|
59 |
T2_nii=[to_uint8(readVol(path)) for path in self.train_T2path] |
|
|
60 |
lbl_nii=[readVol(path) for path in self.train_lblpath] |
|
|
61 |
|
|
|
62 |
if self.is_flip: |
|
|
63 |
vol_num=len(T1_nii) |
|
|
64 |
for nums in range(vol_num): |
|
|
65 |
T1_nii.append(np.array([cv.flip(slice_,1) for slice_ in T1_nii[nums]])) |
|
|
66 |
IR_nii.append(np.array([cv.flip(slice_,1) for slice_ in IR_nii[nums]])) |
|
|
67 |
T2_nii.append(np.array([cv.flip(slice_,1) for slice_ in T2_nii[nums]])) |
|
|
68 |
lbl_nii.append(np.array([cv.flip(slice_,1) for slice_ in lbl_nii[nums]])) |
|
|
69 |
|
|
|
70 |
if self.is_histeq: |
|
|
71 |
print('hist equalizing......') |
|
|
72 |
T1_nii=[histeq(vol) for vol in T1_nii] |
|
|
73 |
IR_nii=[vol for vol in IR_nii] |
|
|
74 |
T2_nii=[vol for vol in T2_nii] |
|
|
75 |
|
|
|
76 |
print('get stacking......') |
|
|
77 |
T1_stack_lists=[get_stacked(vol,self.forest) for vol in T1_nii] |
|
|
78 |
IR_stack_lists=[get_stacked(vol,self.forest) for vol in IR_nii] |
|
|
79 |
T2_stack_lists=[get_stacked(vol,self.forest) for vol in T2_nii] |
|
|
80 |
lbl_stack_lists=[get_stacked(vol,self.forest) for vol in lbl_nii] |
|
|
81 |
|
|
|
82 |
if self.is_rotate: |
|
|
83 |
print('rotating......') |
|
|
84 |
angle_list=[5,-5,10,-10,15,-15] |
|
|
85 |
sample_num=len(T1_stack_lists) |
|
|
86 |
for angle in angle_list: |
|
|
87 |
for sample_index in range(sample_num): |
|
|
88 |
T1_stack_lists.append(rotate(T1_stack_lists[sample_index],angle,interp=cv.INTER_CUBIC).copy()) |
|
|
89 |
IR_stack_lists.append(rotate(IR_stack_lists[sample_index],angle,interp=cv.INTER_CUBIC).copy()) |
|
|
90 |
T2_stack_lists.append(rotate(T2_stack_lists[sample_index],angle,interp=cv.INTER_CUBIC).copy()) |
|
|
91 |
lbl_stack_lists.append(rotate(lbl_stack_lists[sample_index],angle,interp=cv.INTER_NEAREST).copy()) |
|
|
92 |
|
|
|
93 |
if self.is_crop: |
|
|
94 |
print('cropping......') |
|
|
95 |
region_lists=[calc_max_region_list(calc_crop_region(T1_stack_list,50,5),self.forest) for T1_stack_list in T1_stack_lists] |
|
|
96 |
self.region_lists=region_lists |
|
|
97 |
T1_stack_lists=[crop(stack_list,region_lists[list_index]) for list_index,stack_list in enumerate(T1_stack_lists)] |
|
|
98 |
IR_stack_lists=[crop(stack_list,region_lists[list_index]) for list_index,stack_list in enumerate(IR_stack_lists)] |
|
|
99 |
T2_stack_lists=[crop(stack_list,region_lists[list_index]) for list_index,stack_list in enumerate(T2_stack_lists)] |
|
|
100 |
lbl_stack_lists=[crop(stack_list,region_lists[list_index]) for list_index,stack_list in enumerate(lbl_stack_lists)] |
|
|
101 |
''' |
|
|
102 |
print('len=',len(T1_stack_lists)) |
|
|
103 |
T1_path_list=[] |
|
|
104 |
IR_path_list=[] |
|
|
105 |
T2_path_list=[] |
|
|
106 |
lbl_path_list=[] |
|
|
107 |
range_list=[] |
|
|
108 |
name=['1','4','5','7','14','070','148'] |
|
|
109 |
f_n=['n','f'] |
|
|
110 |
ang=['0','5','-5','10','-10','15','-15'] |
|
|
111 |
save_path='../../../../data/' |
|
|
112 |
for sam_i,sample in enumerate(T1_stack_lists): |
|
|
113 |
for img_j,img in enumerate(sample): |
|
|
114 |
T1_path_list.append('imgs/'+'T1/'+'{}_{}_{}_{}.png'.format(name[sam_i%7],f_n[(int(sam_i/7))%2],ang[int(sam_i/14)],img_j)) |
|
|
115 |
path=save_path+'imgs/'+'T1/'+'{}_{}_{}_{}.png'.format(name[sam_i%7],f_n[(int(sam_i/7))%2],ang[int(sam_i/14)],img_j) |
|
|
116 |
cv.imwrite(path,img) |
|
|
117 |
for sam_i,sample in enumerate(IR_stack_lists): |
|
|
118 |
for img_j,img in enumerate(sample): |
|
|
119 |
IR_path_list.append('imgs/'+'IR/'+'{}_{}_{}_{}.png'.format(name[sam_i%7],f_n[(int(sam_i/7))%2],ang[int(sam_i/14)],img_j)) |
|
|
120 |
path=save_path+'imgs/'+'IR/'+'{}_{}_{}_{}.png'.format(name[sam_i%7],f_n[(int(sam_i/7))%2],ang[int(sam_i/14)],img_j) |
|
|
121 |
cv.imwrite(path,img) |
|
|
122 |
for sam_i,sample in enumerate(T2_stack_lists): |
|
|
123 |
for img_j,img in enumerate(sample): |
|
|
124 |
T2_path_list.append('imgs/'+'T2/'+'{}_{}_{}_{}.png'.format(name[sam_i%7],f_n[(int(sam_i/7))%2],ang[int(sam_i/14)],img_j)) |
|
|
125 |
path=save_path+'imgs/'+'T2/'+'{}_{}_{}_{}.png'.format(name[sam_i%7],f_n[(int(sam_i/7))%2],ang[int(sam_i/14)],img_j) |
|
|
126 |
cv.imwrite(path,img) |
|
|
127 |
for sam_i,sample in enumerate(lbl_stack_lists): |
|
|
128 |
for img_j,img in enumerate(sample): |
|
|
129 |
lbl_path_list.append('lbls/'+'{}_{}_{}_{}.png'.format(name[sam_i%7],f_n[(int(sam_i/7))%2],ang[int(sam_i/14)],img_j)) |
|
|
130 |
path=save_path+'lbls/'+'{}_{}_{}_{}.png'.format(name[sam_i%7],f_n[(int(sam_i/7))%2],ang[int(sam_i/14)],img_j) |
|
|
131 |
print(img.shape) |
|
|
132 |
cv.imwrite(path,img) |
|
|
133 |
for sam_i,sample in enumerate(region_lists): |
|
|
134 |
for img_j,img in enumerate(sample): |
|
|
135 |
range_list.append(img) |
|
|
136 |
range_array=np.array(range_list) |
|
|
137 |
y_min_list=range_array[:,0] |
|
|
138 |
y_max_list=range_array[:,1] |
|
|
139 |
x_min_list=range_array[:,2] |
|
|
140 |
x_max_list=range_array[:,3] |
|
|
141 |
df=pd.DataFrame({ 'T1':T1_path_list,'IR':IR_path_list,'T2':T2_path_list,'lbl':lbl_path_list, |
|
|
142 |
'y_min':y_min_list,'y_max':y_max_list,'x_min':x_min_list,'x_max':x_max_list}) |
|
|
143 |
print(df) |
|
|
144 |
df.to_csv("index.csv") |
|
|
145 |
''' |
|
|
146 |
# get means |
|
|
147 |
T1mean,IRmean,T2mean=0.0,0.0,0.0 |
|
|
148 |
for samples in T1_stack_lists: |
|
|
149 |
for stacks in samples: |
|
|
150 |
T1mean=T1mean+np.mean(stacks) |
|
|
151 |
T1mean=T1mean/(len(T1_stack_lists)*len(T1_stack_lists[0])) |
|
|
152 |
print('T1 mean = ',T1mean) |
|
|
153 |
self.T1mean=T1mean |
|
|
154 |
for samples in IR_stack_lists: |
|
|
155 |
for stacks in samples: |
|
|
156 |
IRmean=IRmean+np.mean(stacks) |
|
|
157 |
IRmean=IRmean/(len(IR_stack_lists)*len(IR_stack_lists[0])) |
|
|
158 |
print('IR mean = ',IRmean) |
|
|
159 |
self.IRmean=IRmean |
|
|
160 |
for samples in T2_stack_lists: |
|
|
161 |
for stacks in samples: |
|
|
162 |
T2mean=T2mean+np.mean(stacks) |
|
|
163 |
T2mean=T2mean/(len(T2_stack_lists)*len(T2_stack_lists[0])) |
|
|
164 |
print('T2 mean = ',T2mean) |
|
|
165 |
self.T2mean=T2mean |
|
|
166 |
|
|
|
167 |
# get edegs |
|
|
168 |
print('getting edges') |
|
|
169 |
edge_stack_lists=[] |
|
|
170 |
for samples in lbl_stack_lists: |
|
|
171 |
edge_stack_lists.append(get_edge(samples)) |
|
|
172 |
|
|
|
173 |
# transform |
|
|
174 |
if self.is_transform: |
|
|
175 |
print('transforming') |
|
|
176 |
for sample_index in range(len(T1_stack_lists)): |
|
|
177 |
for stack_index in range(len(T1_stack_lists[0])): |
|
|
178 |
T1_stack_lists[sample_index][stack_index], \ |
|
|
179 |
IR_stack_lists[sample_index][stack_index], \ |
|
|
180 |
T2_stack_lists[sample_index][stack_index], \ |
|
|
181 |
lbl_stack_lists[sample_index][stack_index], \ |
|
|
182 |
edge_stack_lists[sample_index][stack_index]=\ |
|
|
183 |
self.transform( \ |
|
|
184 |
T1_stack_lists[sample_index][stack_index], \ |
|
|
185 |
IR_stack_lists[sample_index][stack_index], \ |
|
|
186 |
T2_stack_lists[sample_index][stack_index], \ |
|
|
187 |
lbl_stack_lists[sample_index][stack_index], \ |
|
|
188 |
edge_stack_lists[sample_index][stack_index]) |
|
|
189 |
|
|
|
190 |
else: |
|
|
191 |
print('validating data') |
|
|
192 |
T1_nii=to_uint8(readVol(self.val_T1path)) |
|
|
193 |
IR_nii=IR_to_uint8(readVol(self.val_IRpath)) |
|
|
194 |
T2_nii=to_uint8(readVol(self.val_T2path)) |
|
|
195 |
lbl_nii=readVol(self.val_lblpath) |
|
|
196 |
|
|
|
197 |
if self.is_histeq: |
|
|
198 |
print('hist equalizing......') |
|
|
199 |
T1_nii=histeq(T1_nii) |
|
|
200 |
IR_nii=IR_nii |
|
|
201 |
T1_nii=T1_nii |
|
|
202 |
|
|
|
203 |
print('get stacking......') |
|
|
204 |
T1_stack_lists=get_stacked(T1_nii,self.forest) |
|
|
205 |
IR_stack_lists=get_stacked(IR_nii,self.forest) |
|
|
206 |
T2_stack_lists=get_stacked(T2_nii,self.forest) |
|
|
207 |
lbl_stack_lists=get_stacked(lbl_nii,self.forest) |
|
|
208 |
|
|
|
209 |
if self.is_crop: |
|
|
210 |
print('cropping......') |
|
|
211 |
region_lists=calc_max_region_list(calc_crop_region(T1_stack_lists,50,5),self.forest) |
|
|
212 |
self.region_lists=region_lists |
|
|
213 |
T1_stack_lists=crop(T1_stack_lists,region_lists) |
|
|
214 |
IR_stack_lists=crop(IR_stack_lists,region_lists) |
|
|
215 |
T2_stack_lists=crop(T2_stack_lists,region_lists) |
|
|
216 |
lbl_stack_lists=crop(lbl_stack_lists,region_lists) |
|
|
217 |
|
|
|
218 |
# get means |
|
|
219 |
T1mean,IRmean,T2mean=0.0,0.0,0.0 |
|
|
220 |
for stacks in T1_stack_lists: |
|
|
221 |
T1mean=T1mean+np.mean(stacks) |
|
|
222 |
T1mean=T1mean/(len(T1_stack_lists)) |
|
|
223 |
print('T1 mean = ',T1mean) |
|
|
224 |
self.T1mean=T1mean |
|
|
225 |
for stacks in IR_stack_lists: |
|
|
226 |
IRmean=IRmean+np.mean(stacks) |
|
|
227 |
IRmean=IRmean/(len(IR_stack_lists)) |
|
|
228 |
print('IR mean = ',IRmean) |
|
|
229 |
self.IRmean=IRmean |
|
|
230 |
for stacks in T2_stack_lists: |
|
|
231 |
T2mean=T2mean+np.mean(stacks) |
|
|
232 |
T2mean=T2mean/(len(T2_stack_lists)) |
|
|
233 |
print('T2 mean = ',T2mean) |
|
|
234 |
self.T2mean=T2mean |
|
|
235 |
|
|
|
236 |
# get edges |
|
|
237 |
print('getting edges') |
|
|
238 |
edge_stack_lists=get_edge(lbl_stack_lists) |
|
|
239 |
|
|
|
240 |
# transform |
|
|
241 |
if self.is_transform: |
|
|
242 |
print('transforming') |
|
|
243 |
for stack_index in range(len(T1_stack_lists)): |
|
|
244 |
T1_stack_lists[stack_index], \ |
|
|
245 |
IR_stack_lists[stack_index], \ |
|
|
246 |
T2_stack_lists[stack_index], \ |
|
|
247 |
lbl_stack_lists[stack_index], \ |
|
|
248 |
edge_stack_lists[stack_index]=\ |
|
|
249 |
self.transform( \ |
|
|
250 |
T1_stack_lists[stack_index], \ |
|
|
251 |
IR_stack_lists[stack_index], \ |
|
|
252 |
T2_stack_lists[stack_index], \ |
|
|
253 |
lbl_stack_lists[stack_index], \ |
|
|
254 |
edge_stack_lists[stack_index]) |
|
|
255 |
|
|
|
256 |
# data ready |
|
|
257 |
self.T1_stack_lists=T1_stack_lists |
|
|
258 |
self.IR_stack_lists=IR_stack_lists |
|
|
259 |
self.T2_stack_lists=T2_stack_lists |
|
|
260 |
self.lbl_stack_lists=lbl_stack_lists |
|
|
261 |
self.edge_stack_lists=edge_stack_lists |
|
|
262 |
|
|
|
263 |
|
|
|
264 |
def __len__(self): |
|
|
265 |
return (self.is_val)and(48)or(48*6*7*2) |
|
|
266 |
def __getitem__(self,index): |
|
|
267 |
# get train or validation data |
|
|
268 |
if self.is_val==False: |
|
|
269 |
set_index=range(len(self.T1_stack_lists)) |
|
|
270 |
img_index=range(len(self.T1_stack_lists[0])) |
|
|
271 |
return \ |
|
|
272 |
self.region_lists[set_index[int(index/48)]][img_index[int(index%48)]], \ |
|
|
273 |
self.T1_stack_lists[set_index[int(index/48)]][img_index[int(index%48)]],\ |
|
|
274 |
self.IR_stack_lists[set_index[int(index/48)]][img_index[int(index%48)]],\ |
|
|
275 |
self.T2_stack_lists[set_index[int(index/48)]][img_index[int(index%48)]],\ |
|
|
276 |
self.lbl_stack_lists[set_index[int(index/48)]][img_index[int(index%48)]] |
|
|
277 |
#self.edge_stack_lists[set_index[int(index/48)]][img_index[int(index%48)]] |
|
|
278 |
|
|
|
279 |
else: |
|
|
280 |
img_index=range(len(self.T1_stack_lists)) |
|
|
281 |
return \ |
|
|
282 |
self.region_lists[img_index[int(index)]], \ |
|
|
283 |
self.T1_stack_lists[img_index[int(index)]], \ |
|
|
284 |
self.IR_stack_lists[img_index[int(index)]], \ |
|
|
285 |
self.T2_stack_lists[img_index[int(index)]], \ |
|
|
286 |
self.lbl_stack_lists[img_index[int(index)]] |
|
|
287 |
#self.edge_stack_lists[img_index[int(index)]] |
|
|
288 |
|
|
|
289 |
|
|
|
290 |
|
|
|
291 |
|
|
|
292 |
def transform(self,imgT1,imgIR,imgT2,lbl,edge): |
|
|
293 |
imgT1=torch.from_numpy((imgT1.transpose(2,0,1).astype(np.float)-self.T1mean)/255.0).float() |
|
|
294 |
imgIR=torch.from_numpy((imgIR.transpose(2,0,1).astype(np.float)-self.IRmean)/255.0).float() |
|
|
295 |
imgT2=torch.from_numpy((imgT2.transpose(2,0,1).astype(np.float)-self.T2mean)/255.0).float() |
|
|
296 |
lbl=torch.from_numpy(lbl.transpose(2,0,1)).long() |
|
|
297 |
edge=torch.from_numpy(edge.transpose(2,0,1)/255).float() |
|
|
298 |
return imgT1,imgIR,imgT2,lbl,edge |
|
|
299 |
def decode_segmap(self,label_mask): |
|
|
300 |
r,g,b=label_mask.copy(),label_mask.copy(),label_mask.copy() |
|
|
301 |
for ll in range(0,self.n_classes): |
|
|
302 |
r[label_mask==ll]=self.color[ll,2] |
|
|
303 |
g[label_mask==ll]=self.color[ll,1] |
|
|
304 |
b[label_mask==ll]=self.color[ll,0] |
|
|
305 |
rgb=np.zeros((label_mask.shape[0],label_mask.shape[1],3)) |
|
|
306 |
rgb[:,:,0],rgb[:,:,1],rgb[:,:,2]=r,g,b |
|
|
307 |
return rgb |
|
|
308 |
def lbl_totest(self,pred): |
|
|
309 |
pred_test=np.zeros((pred.shape[0],pred.shape[1]),np.uint8) |
|
|
310 |
for ll in range(9): |
|
|
311 |
pred_test[pred==ll]=self.label_test[ll] |
|
|
312 |
return pred_test |
|
|
313 |
|
|
|
314 |
if __name__=='__main__': |
|
|
315 |
path='../../../../data/' |
|
|
316 |
MRloader=MR18loader_CV(root=path,val_num=7,is_val=False,is_transform=True,is_flip=True,is_rotate=True,is_crop=True,is_histeq=True,forest=3) |
|
|
317 |
loader=data.DataLoader(MRloader, batch_size=1, num_workers=1, shuffle=True) |
|
|
318 |
for i,(regions,T1s,IRs,T2s,lbls) in enumerate(MRloader): |
|
|
319 |
print(i) |
|
|
320 |
#print(T1s.shape) |
|
|
321 |
#print(regions) |
|
|
322 |
#print(lbls.min()) |
|
|
323 |
#print(lbls.max()) |
|
|
324 |
#cv.imwrite(str(i)+'.png',T1s[:,:,1]) |
|
|
325 |
#print(region) |
|
|
326 |
#print(imgT1.shape) |
|
|
327 |
#print(imgIR.shape) |
|
|
328 |
#print(imgT2.shape) |
|
|
329 |
#print(lbl.shape) |
|
|
330 |
|
|
|
331 |
#print('[{},{},{},{}]'.format(imgT1[0,2,40,40],imgIR[0,2,40,40],imgT2[0,2,40,40],lbl[0,2,40,40])) |
|
|
332 |
|
|
|
333 |
#cv.imwrite('T1-'+str(i)+'.png',imgT1[2]) |
|
|
334 |
#cv.imwrite('IR-'+str(i)+'.png',imgIR[2]) |
|
|
335 |
#cv.imwrite('T2-'+str(i)+'.png',imgT2[2]) |
|
|
336 |
#cv.imwrite('lbl-'+str(i)+'.png',MRloader.decode_segmap(lbl[2])) |
|
|
337 |
|