|
a |
|
b/README.md |
|
|
1 |
# BraTS18——Multimodal Brain Tumor Segmentation Challenge 2018 |
|
|
2 |
> This is an example of the MutiModal MRI images Brain Tumor Segmentation |
|
|
3 |
 |
|
|
4 |
|
|
|
5 |
## Prerequisities |
|
|
6 |
The following dependencies are needed: |
|
|
7 |
- numpy >= 1.11.1 |
|
|
8 |
- SimpleITK >=1.0.1 |
|
|
9 |
- opencv-python >=3.3.0 |
|
|
10 |
- tensorflow-gpu ==1.8.0 |
|
|
11 |
- pandas >=0.20.1 |
|
|
12 |
- scikit-learn >= 0.17.1 |
|
|
13 |
|
|
|
14 |
## How to Use |
|
|
15 |
|
|
|
16 |
**1、Preprocess** |
|
|
17 |
|
|
|
18 |
* analyze the MutiModal MRI image message and Mask image label:run the dataAnaly.py function of getMaskLabelValue() and getImageSizeandSpacing(). |
|
|
19 |
* MutiModal Brain Tumor MRI images have fixed size (240,240,155). |
|
|
20 |
* generate patch(128,128,64) tumor image and mask for Tumor Segmentation:run the data3dprepare.py. |
|
|
21 |
* save patch image and mask into csv file: run the utils.py,like file trainSegmentation.csv. |
|
|
22 |
* split trainSegmentation.csv into training set and test set:run subset.py. |
|
|
23 |
|
|
|
24 |
**2、Brain Tumor Segmentation** |
|
|
25 |
* the VNet model |
|
|
26 |
|
|
|
27 |
 |
|
|
28 |
|
|
|
29 |
* Tumor Segmentation training:run the train_Brats.py |
|
|
30 |
* Tumor Segmentation predict:run the predict_Brats.py |
|
|
31 |
* Tumor Segmentation inference:run the inference_Brats.py |
|
|
32 |
|
|
|
33 |
## Result |
|
|
34 |
|
|
|
35 |
* the train loss |
|
|
36 |
|
|
|
37 |
 |
|
|
38 |
|
|
|
39 |
 |
|
|
40 |
|
|
|
41 |
## Contact |
|
|
42 |
* https://github.com/junqiangchen |
|
|
43 |
* email: 1207173174@qq.com |
|
|
44 |
* Contact: junqiangChen |
|
|
45 |
* WeChat Number: 1207173174 |
|
|
46 |
* WeChat Public number: 最新医学影像技术 |