--- a +++ b/README.md @@ -0,0 +1,46 @@ +# BraTS18——Multimodal Brain Tumor Segmentation Challenge 2018 +> This is an example of the MutiModal MRI images Brain Tumor Segmentation + + +## Prerequisities +The following dependencies are needed: +- numpy >= 1.11.1 +- SimpleITK >=1.0.1 +- opencv-python >=3.3.0 +- tensorflow-gpu ==1.8.0 +- pandas >=0.20.1 +- scikit-learn >= 0.17.1 + +## How to Use + +**1、Preprocess** + +* analyze the MutiModal MRI image message and Mask image label:run the dataAnaly.py function of getMaskLabelValue() and getImageSizeandSpacing(). +* MutiModal Brain Tumor MRI images have fixed size (240,240,155). +* generate patch(128,128,64) tumor image and mask for Tumor Segmentation:run the data3dprepare.py. +* save patch image and mask into csv file: run the utils.py,like file trainSegmentation.csv. +* split trainSegmentation.csv into training set and test set:run subset.py. + +**2、Brain Tumor Segmentation** +* the VNet model + + + +* Tumor Segmentation training:run the train_Brats.py +* Tumor Segmentation predict:run the predict_Brats.py +* Tumor Segmentation inference:run the inference_Brats.py + +## Result + +* the train loss + + + + + +## Contact +* https://github.com/junqiangchen +* email: 1207173174@qq.com +* Contact: junqiangChen +* WeChat Number: 1207173174 +* WeChat Public number: 最新医学影像技术