# -*- coding: utf-8 -*-
# Author: Christoph Berger
# Script for the fusion of segmentation labels
#
# Please refer to README.md and LICENSE.md for further documentation
# This software is not certified for clinical use.
import itertools
import logging
import math
import os
import os.path as op
import numpy as np
from .util import filemanager as fm
from .util import own_itk as oitk
from .util.citation_reminder import citation_reminder
class Fusionator(object):
@citation_reminder
def __init__(self, verbose=True):
self.verbose = verbose
def _binaryMav(self, candidates, weights=None):
"""
binaryMav performs majority vote fusion on an arbitary number of input segmentations with
only two classes each (1 and 0).
Args:
candidates (list): the candidate segmentations as binary numpy arrays of same shape
weights (list, optional): associated weights for each segmentation in candidates. Defaults to None.
Return
array: a numpy array with the majority vote result
"""
num = len(candidates)
if weights == None:
weights = itertools.repeat(1, num)
# manage empty calls
if num == 0:
print("ERROR! No segmentations to fuse.")
elif num == 1:
return candidates[0]
if self.verbose:
print(
"Number of segmentations to be fused using compound majority vote is: ",
num,
)
for c in candidates:
print(
"Candidate with shape {} and values {} and sum {}".format(
c.shape, np.unique(c), np.sum(c)
)
)
# load first segmentation and use it to create initial numpy arrays
temp = candidates[0]
result = np.zeros(temp.shape)
# loop through all available segmentations and tally votes for each class
label = np.zeros(temp.shape)
for c, w in zip(candidates, weights):
if c.max() != 1 or c.min() != 0:
logging.warning(
"The passed segmentation contains labels other than 1 and 0."
)
print("weight is: " + str(w))
label[c == 1] += 1.0 * w
num = sum(weights)
result[label >= (num / 2.0)] = 1
if self.verbose:
print("Shape of result:", result.shape)
print("Shape of current input array:", temp.shape)
print(
"Labels and datatype of current output:",
result.max(),
result.min(),
result.dtype,
)
return result
def _mav(self, candidates, labels=None, weights=None):
"""
mav performs majority vote fusion on an arbitary number of input segmentations with
an arbitrary number of labels.
Args:
candidates (list): the candidate segmentations as binary numpy arrays of same shape
labels (list, optional): a list of labels present in the candidates. Defaults to None.
weights (list, optional): weights for the fusion. Defaults to None.
Returns:
array: a numpy array with the majority vote result
"""
num = len(candidates)
if weights == None:
weights = itertools.repeat(1, num)
# manage empty calls
if num == 0:
print("ERROR! No segmentations to fuse.")
if self.verbose:
print(
"Number of segmentations to be fused using compound majority vote is: ",
num,
)
# if no labels are passed, get the labels from the first input file (might lead to misisng labels!)
if labels == None:
labels = np.unique(candidates[0])
for c in candidates:
labels = np.append(labels, np.unique(c))
print(
"Labels of current candidate: {}, dtype: {}".format(
np.unique(c), c.dtype
)
)
labels = np.unique(labels).astype(int)
logging.warning(
"No labels passed, choosing those labels automatically: {}".format(
labels
)
)
# remove background label
if 0 in labels:
labels = np.delete(labels, 0)
# load first segmentation and use it to create initial numpy arrays
temp = candidates[0]
result = np.zeros(temp.shape)
# loop through all available segmentations and tally votes for each class
print("Labels: {}".format(labels))
for l in sorted(labels, reverse=True):
label = np.zeros(temp.shape)
num = 0
for c, w in zip(candidates, weights):
print("weight is: " + str(w))
label[c == l] += 1.0 * w
num = sum(weights)
print(num)
result[label >= (num / 2.0)] = l
if self.verbose:
print("Shape of result:", result.shape)
print(
"Labels and datatype of result:",
result.max(),
result.min(),
result.dtype,
)
return result
def _brats_simple(
self,
candidates,
weights=None,
t=0.05,
stop=25,
inc=0.07,
method="dice",
iterations=25,
):
"""
BRATS DOMAIN ADAPTED!!!!! simple implementation using DICE scoring
Iteratively estimates the accuracy of the segmentations and dynamically assigns weights
for the next iteration. Continues for each label until convergence is reached.
Args:
candidates (list): [description]
weights (list, optional): [description]. Defaults to None.
t (float, optional): [description]. Defaults to 0.05.
stop (int, optional): [description]. Defaults to 25.
inc (float, optional): [description]. Defaults to 0.07.
method (str, optional): [description]. Defaults to 'dice'.
iterations (int, optional): [description]. Defaults to 25.
labels (list, optional): [description]. Defaults to None.
Raises:
IOError: If no segmentations to be fused are passed
Returns:
array: a numpy array with the SIMPLE fusion result
"""
# manage empty calls
num = len(candidates)
if num == 0:
print("ERROR! No segmentations to fuse.")
raise IOError("No valid segmentations passed for SIMPLE Fusion")
if self.verbose:
print("Number of segmentations to be fused using SIMPLE is: ", num)
# handle unpassed weights
if weights == None:
weights = itertools.repeat(1, num)
backup_weights = weights # ugly save to reset weights after each round
# get unique labels for multi-class fusion
result = np.zeros(candidates[0].shape)
labels = [2, 1, 4]
logging.info("Fusing a segmentation with the labels: {}".format(labels))
# loop over each label
for l in labels:
if self.verbose:
print("Currently fusing label {}".format(l))
# load first segmentation and use it to create initial numpy arrays IFF it contains labels
if l == 2:
# whole tumor
bin_candidates = [(c > 0).astype(int) for c in candidates]
elif l == 1:
# tumor core
bin_candidates = [((c == 1) | (c == 4)).astype(int) for c in candidates]
else:
# active tumor
bin_candidates = [(c == 4).astype(int) for c in candidates]
if self.verbose:
print(bin_candidates[0].shape)
# baseline estimate
estimate = self._binaryMav(bin_candidates, weights)
# initial convergence baseline
conv = np.sum(estimate)
# check if the estimate was reasonable
if conv == 0:
logging.error("Majority Voting in SIMPLE returned an empty array")
# return np.zeros(candidates[0].shape)
# reset tau before each iteration
tau = t
for i in range(iterations):
t_weights = [] # temporary weights
for c in bin_candidates:
# score all canidate segmentations
t_weights.append(
(self._score(c, estimate, method) + 1) ** 2
) # SQUARED DICE!
weights = t_weights
# save maximum score in weights
max_phi = max(weights)
# remove dropout estimates
bin_candidates = [
c for c, w in zip(bin_candidates, weights) if (w > t * max_phi)
]
# calculate new estimate
estimate = self._binaryMav(bin_candidates, weights)
# increment tau
tau = tau + inc
# check if it converges
if np.abs(conv - np.sum(estimate)) < stop:
if self.verbose:
print(
"Convergence for label {} after {} iterations reached.".format(
l, i
)
)
break
conv = np.sum(estimate)
# assign correct label to result
result[estimate == 1] = l
# reset weights
weights = backup_weights
if self.verbose:
print("Shape of result:", result.shape)
print("Shape of current input array:", bin_candidates[0].shape)
print(
"Labels and datatype of current output:",
result.max(),
result.min(),
result.dtype,
)
return result
def _simple(
self,
candidates,
weights=None,
t=0.05,
stop=25,
inc=0.07,
method="dice",
iterations=25,
labels=None,
):
"""
simple implementation using DICE scoring
Iteratively estimates the accuracy of the segmentations and dynamically assigns weights
for the next iteration. Continues for each label until convergence is reached.
Args:
candidates (list): [description]
weights (list, optional): [description]. Defaults to None.
t (float, optional): [description]. Defaults to 0.05.
stop (int, optional): [description]. Defaults to 25.
inc (float, optional): [description]. Defaults to 0.07.
method (str, optional): [description]. Defaults to 'dice'.
iterations (int, optional): [description]. Defaults to 25.
labels (list, optional): [description]. Defaults to None.
Raises:
IOError: If no segmentations to be fused are passed
Returns:
array: a numpy array with the SIMPLE fusion result
"""
# manage empty calls
num = len(candidates)
if num == 0:
print("ERROR! No segmentations to fuse.")
raise IOError("No valid segmentations passed for SIMPLE Fusion")
if self.verbose:
print("Number of segmentations to be fused using SIMPLE is: ", num)
# handle unpassed weights
if weights == None:
weights = itertools.repeat(1, num)
backup_weights = weights # ugly save to reset weights after each round
# get unique labels for multi-class fusion
if labels == None:
labels = np.unique(candidates[0])
for c in candidates:
labels = np.append(labels, np.unique(c))
print(
"Labels of current candidate: {}, dtype: {}".format(
np.unique(c), c.dtype
)
)
labels = np.unique(labels).astype(int)
logging.warning(
"No labels passed, choosing those labels automatically: {}".format(
labels
)
)
result = np.zeros(candidates[0].shape)
# remove background label
if 0 in labels:
labels = np.delete(labels, 0)
logging.info("Fusing a segmentation with the labels: {}".format(labels))
# loop over each label
for l in sorted(labels):
if self.verbose:
print("Currently fusing label {}".format(l))
# load first segmentation and use it to create initial numpy arrays IFF it contains labels
bin_candidates = [(c == l).astype(int) for c in candidates]
if self.verbose:
print(bin_candidates[0].shape)
# baseline estimate
estimate = self._binaryMav(bin_candidates, weights)
# initial convergence baseline
conv = np.sum(estimate)
# check if the estimate was reasonable
if conv == 0:
logging.error("Majority Voting in SIMPLE returned an empty array")
# return np.zeros(candidates[0].shape)
# reset tau before each iteration
tau = t
for i in range(iterations):
t_weights = [] # temporary weights
for c in bin_candidates:
# score all canidate segmentations
t_weights.append(
(self._score(c, estimate, method) + 1) ** 2
) # SQUARED DICE!
weights = t_weights
# save maximum score in weights
max_phi = max(weights)
# remove dropout estimates
bin_candidates = [
c for c, w in zip(bin_candidates, weights) if (w > t * max_phi)
]
# calculate new estimate
estimate = self._binaryMav(bin_candidates, weights)
# increment tau
tau = tau + inc
# check if it converges
if np.abs(conv - np.sum(estimate)) < stop:
if self.verbose:
print(
"Convergence for label {} after {} iterations reached.".format(
l, i
)
)
break
conv = np.sum(estimate)
# assign correct label to result
result[estimate == 1] = l
# reset weights
weights = backup_weights
if self.verbose:
print("Shape of result:", result.shape)
print("Shape of current input array:", bin_candidates[0].shape)
print(
"Labels and datatype of current output:",
result.max(),
result.min(),
result.dtype,
)
return result
def _dirFuse(self, directory, method="mav", outputPath=None, labels=None):
"""
dirFuse [summary]
Args:
directory ([type]): [description]
method (str, optional): [description]. Defaults to 'mav'.
outputName ([type], optional): [description]. Defaults to None.
"""
if method == "all":
return
candidates = []
weights = []
temp = None
for file in os.listdir(directory):
if file.endswith(".nii.gz"):
# skip existing fusions
if "fusion" in file:
continue
temp = op.join(directory, file)
try:
candidates.append(oitk.get_itk_array(oitk.get_itk_image(temp)))
weights.append(1)
print("Loaded: " + os.path.join(directory, file))
except Exception as e:
print(
"Could not load this file: "
+ file
+ " \nPlease check if this is a valid path and that the files exists. Exception: "
+ e
)
if method == "mav":
print(
"Orchestra: Now fusing all .nii.gz files in directory {} using MAJORITY VOTING. For more output, set the -v or --verbose flag or instantiate the fusionator class with verbose=true".format(
directory
)
)
result = self._mav(candidates, labels, weights)
elif method == "simple":
print(
"Orchestra: Now fusing all .nii.gz files in directory {} using SIMPLE. For more output, set the -v or --verbose flag or instantiate the fusionator class with verbose=true".format(
directory
)
)
result = self._simple(candidates, weights)
elif method == "brats-simple":
print(
"Orchestra: Now fusing all .nii.gz files in directory {} using BRATS-SIMPLE. For more output, set the -v or --verbose flag or instantiate the fusionator class with verbose=true".format(
directory
)
)
result = self._brats_simple(candidates, weights)
try:
if outputPath == None:
oitk.write_itk_image(
oitk.make_itk_image(result, proto_image=oitk.get_itk_image(temp)),
op.join(directory, method + "_fusion.nii.gz"),
)
else:
outputDir = op.dirname(outputPath)
os.makedirs(outputDir, exist_ok=True)
oitk.write_itk_image(
oitk.make_itk_image(result, proto_image=oitk.get_itk_image(temp)),
outputPath,
)
logging.info(
"Segmentation Fusion with method {} saved in directory {}.".format(
method, directory
)
)
except Exception as e:
print("Very bad, this should also be logged somewhere: " + str(e))
logging.exception(
"Issues while saving the resulting segmentation: {}".format(str(e))
)
def fuse(self, segmentations, outputPath, method="mav", weights=None, labels=None):
"""
fuse [summary]
Args:
segmentations ([type]): [description]
outputPath ([type]): [description]
method (str, optional): [description]. Defaults to 'mav'.
weights ([type], optional): [description]. Defaults to None.
Raises:
IOError: [description]
"""
candidates = []
if weights is not None:
if len(weights) != len(segmentations):
raise IOError(
"Please pass a matching number of weights and segmentation files"
)
w_weights = weights
else:
w_weights = []
for seg in segmentations:
if seg.endswith(".nii.gz"):
try:
candidates.append(oitk.get_itk_array(oitk.get_itk_image(seg)))
if weights is None:
w_weights.append(1)
print("Loaded: " + seg)
except Exception as e:
print(
"Could not load this file: "
+ seg
+ " \nPlease check if this is a valid path and that the files exists. Exception: "
+ str(e)
)
raise
if method == "mav":
print(
"Orchestra: Now fusing all passed .nii.gz files using MAJORITY VOTING. For more output, set the -v or --verbose flag or instantiate the fusionator class with verbose=true"
)
result = self._mav(candidates, labels=labels, weights=w_weights)
elif method == "simple":
print(
"Orchestra: Now fusing all passed .nii.gz files in using SIMPLE. For more output, set the -v or --verbose flag or instantiate the fusionator class with verbose=true"
)
result = self._simple(candidates, w_weights)
elif method == "brats-simple":
print(
"Orchestra: Now fusing all .nii.gz files in directory {} using BRATS-SIMPLE. For more output, set the -v or --verbose flag or instantiate the fusionator class with verbose=true"
)
result = self._brats_simple(candidates, w_weights)
try:
outputDir = op.dirname(outputPath)
os.makedirs(outputDir, exist_ok=True)
oitk.write_itk_image(
oitk.make_itk_image(result, proto_image=oitk.get_itk_image(seg)),
outputPath,
)
logging.info(
"Segmentation Fusion with method {} saved as {}.".format(
method, outputPath
)
)
except Exception as e:
print("Very bad, this should also be logged somewhere: " + str(e))
logging.exception(
"Issues while saving the resulting segmentation: {}".format(str(e))
)
def _score(self, seg, gt, method="dice"):
"""Calculates a similarity score based on the
method specified in the parameters
Input: Numpy arrays to be compared, need to have the
same dimensions (shape)
Default scoring method: DICE coefficient
method may be: 'dice'
'auc'
'bdice'
returns: a score [0,1], 1 for identical inputs
"""
try:
# True Positive (TP): we predict a label of 1 (positive) and the true label is 1.
TP = np.sum(np.logical_and(seg == 1, gt == 1))
# True Negative (TN): we predict a label of 0 (negative) and the true label is 0.
TN = np.sum(np.logical_and(seg == 0, gt == 0))
# False Positive (FP): we predict a label of 1 (positive), but the true label is 0.
FP = np.sum(np.logical_and(seg == 1, gt == 0))
# False Negative (FN): we predict a label of 0 (negative), but the true label is 1.
FN = np.sum(np.logical_and(seg == 0, gt == 1))
FPR = FP / (FP + TN)
FNR = FN / (FN + TP)
TPR = TP / (TP + FN)
TNR = TN / (TN + FP)
except ValueError:
print("Value error encountered!")
return 0
# faster dice? Oh yeah!
if method == "dice":
# default dice score
score = 2 * TP / (2 * TP + FP + FN)
elif method == "auc":
# AUC scoring
score = 1 - (FPR + FNR) / 2
elif method == "bdice":
# biased dice towards false negatives
score = 2 * TP / (2 * TP + FN)
elif method == "spec":
# specificity
score = TN / (TN + FP)
elif method == "sens":
# sensitivity
score = TP / (TP + FN)
elif method == "toterr":
score = (FN + FP) / (155 * 240 * 240)
elif method == "ppv":
prev = np.sum(gt) / (155 * 240 * 240)
temp = TPR * prev
score = (temp) / (temp + (1 - TNR) * (1 - prev))
else:
score = 0
if np.isnan(score) or math.isnan(score):
score = 0
return score