|
a |
|
b/brats_toolkit/fusionator.py |
|
|
1 |
# -*- coding: utf-8 -*- |
|
|
2 |
# Author: Christoph Berger |
|
|
3 |
# Script for the fusion of segmentation labels |
|
|
4 |
# |
|
|
5 |
# Please refer to README.md and LICENSE.md for further documentation |
|
|
6 |
# This software is not certified for clinical use. |
|
|
7 |
import itertools |
|
|
8 |
import logging |
|
|
9 |
import math |
|
|
10 |
import os |
|
|
11 |
import os.path as op |
|
|
12 |
|
|
|
13 |
import numpy as np |
|
|
14 |
|
|
|
15 |
from .util import filemanager as fm |
|
|
16 |
from .util import own_itk as oitk |
|
|
17 |
from .util.citation_reminder import citation_reminder |
|
|
18 |
|
|
|
19 |
|
|
|
20 |
class Fusionator(object): |
|
|
21 |
@citation_reminder |
|
|
22 |
def __init__(self, verbose=True): |
|
|
23 |
self.verbose = verbose |
|
|
24 |
|
|
|
25 |
def _binaryMav(self, candidates, weights=None): |
|
|
26 |
""" |
|
|
27 |
binaryMav performs majority vote fusion on an arbitary number of input segmentations with |
|
|
28 |
only two classes each (1 and 0). |
|
|
29 |
|
|
|
30 |
Args: |
|
|
31 |
candidates (list): the candidate segmentations as binary numpy arrays of same shape |
|
|
32 |
weights (list, optional): associated weights for each segmentation in candidates. Defaults to None. |
|
|
33 |
|
|
|
34 |
Return |
|
|
35 |
array: a numpy array with the majority vote result |
|
|
36 |
""" |
|
|
37 |
num = len(candidates) |
|
|
38 |
if weights == None: |
|
|
39 |
weights = itertools.repeat(1, num) |
|
|
40 |
# manage empty calls |
|
|
41 |
if num == 0: |
|
|
42 |
print("ERROR! No segmentations to fuse.") |
|
|
43 |
elif num == 1: |
|
|
44 |
return candidates[0] |
|
|
45 |
if self.verbose: |
|
|
46 |
print( |
|
|
47 |
"Number of segmentations to be fused using compound majority vote is: ", |
|
|
48 |
num, |
|
|
49 |
) |
|
|
50 |
for c in candidates: |
|
|
51 |
print( |
|
|
52 |
"Candidate with shape {} and values {} and sum {}".format( |
|
|
53 |
c.shape, np.unique(c), np.sum(c) |
|
|
54 |
) |
|
|
55 |
) |
|
|
56 |
# load first segmentation and use it to create initial numpy arrays |
|
|
57 |
temp = candidates[0] |
|
|
58 |
result = np.zeros(temp.shape) |
|
|
59 |
# loop through all available segmentations and tally votes for each class |
|
|
60 |
label = np.zeros(temp.shape) |
|
|
61 |
for c, w in zip(candidates, weights): |
|
|
62 |
if c.max() != 1 or c.min() != 0: |
|
|
63 |
logging.warning( |
|
|
64 |
"The passed segmentation contains labels other than 1 and 0." |
|
|
65 |
) |
|
|
66 |
print("weight is: " + str(w)) |
|
|
67 |
label[c == 1] += 1.0 * w |
|
|
68 |
num = sum(weights) |
|
|
69 |
result[label >= (num / 2.0)] = 1 |
|
|
70 |
if self.verbose: |
|
|
71 |
print("Shape of result:", result.shape) |
|
|
72 |
print("Shape of current input array:", temp.shape) |
|
|
73 |
print( |
|
|
74 |
"Labels and datatype of current output:", |
|
|
75 |
result.max(), |
|
|
76 |
result.min(), |
|
|
77 |
result.dtype, |
|
|
78 |
) |
|
|
79 |
return result |
|
|
80 |
|
|
|
81 |
def _mav(self, candidates, labels=None, weights=None): |
|
|
82 |
""" |
|
|
83 |
mav performs majority vote fusion on an arbitary number of input segmentations with |
|
|
84 |
an arbitrary number of labels. |
|
|
85 |
|
|
|
86 |
Args: |
|
|
87 |
candidates (list): the candidate segmentations as binary numpy arrays of same shape |
|
|
88 |
labels (list, optional): a list of labels present in the candidates. Defaults to None. |
|
|
89 |
weights (list, optional): weights for the fusion. Defaults to None. |
|
|
90 |
|
|
|
91 |
Returns: |
|
|
92 |
array: a numpy array with the majority vote result |
|
|
93 |
""" |
|
|
94 |
num = len(candidates) |
|
|
95 |
if weights == None: |
|
|
96 |
weights = itertools.repeat(1, num) |
|
|
97 |
# manage empty calls |
|
|
98 |
if num == 0: |
|
|
99 |
print("ERROR! No segmentations to fuse.") |
|
|
100 |
if self.verbose: |
|
|
101 |
print( |
|
|
102 |
"Number of segmentations to be fused using compound majority vote is: ", |
|
|
103 |
num, |
|
|
104 |
) |
|
|
105 |
# if no labels are passed, get the labels from the first input file (might lead to misisng labels!) |
|
|
106 |
if labels == None: |
|
|
107 |
labels = np.unique(candidates[0]) |
|
|
108 |
for c in candidates: |
|
|
109 |
labels = np.append(labels, np.unique(c)) |
|
|
110 |
print( |
|
|
111 |
"Labels of current candidate: {}, dtype: {}".format( |
|
|
112 |
np.unique(c), c.dtype |
|
|
113 |
) |
|
|
114 |
) |
|
|
115 |
labels = np.unique(labels).astype(int) |
|
|
116 |
logging.warning( |
|
|
117 |
"No labels passed, choosing those labels automatically: {}".format( |
|
|
118 |
labels |
|
|
119 |
) |
|
|
120 |
) |
|
|
121 |
# remove background label |
|
|
122 |
if 0 in labels: |
|
|
123 |
labels = np.delete(labels, 0) |
|
|
124 |
# load first segmentation and use it to create initial numpy arrays |
|
|
125 |
temp = candidates[0] |
|
|
126 |
result = np.zeros(temp.shape) |
|
|
127 |
# loop through all available segmentations and tally votes for each class |
|
|
128 |
print("Labels: {}".format(labels)) |
|
|
129 |
for l in sorted(labels, reverse=True): |
|
|
130 |
label = np.zeros(temp.shape) |
|
|
131 |
num = 0 |
|
|
132 |
for c, w in zip(candidates, weights): |
|
|
133 |
print("weight is: " + str(w)) |
|
|
134 |
label[c == l] += 1.0 * w |
|
|
135 |
num = sum(weights) |
|
|
136 |
print(num) |
|
|
137 |
result[label >= (num / 2.0)] = l |
|
|
138 |
if self.verbose: |
|
|
139 |
print("Shape of result:", result.shape) |
|
|
140 |
print( |
|
|
141 |
"Labels and datatype of result:", |
|
|
142 |
result.max(), |
|
|
143 |
result.min(), |
|
|
144 |
result.dtype, |
|
|
145 |
) |
|
|
146 |
return result |
|
|
147 |
|
|
|
148 |
def _brats_simple( |
|
|
149 |
self, |
|
|
150 |
candidates, |
|
|
151 |
weights=None, |
|
|
152 |
t=0.05, |
|
|
153 |
stop=25, |
|
|
154 |
inc=0.07, |
|
|
155 |
method="dice", |
|
|
156 |
iterations=25, |
|
|
157 |
): |
|
|
158 |
""" |
|
|
159 |
BRATS DOMAIN ADAPTED!!!!! simple implementation using DICE scoring |
|
|
160 |
Iteratively estimates the accuracy of the segmentations and dynamically assigns weights |
|
|
161 |
for the next iteration. Continues for each label until convergence is reached. |
|
|
162 |
|
|
|
163 |
Args: |
|
|
164 |
candidates (list): [description] |
|
|
165 |
weights (list, optional): [description]. Defaults to None. |
|
|
166 |
t (float, optional): [description]. Defaults to 0.05. |
|
|
167 |
stop (int, optional): [description]. Defaults to 25. |
|
|
168 |
inc (float, optional): [description]. Defaults to 0.07. |
|
|
169 |
method (str, optional): [description]. Defaults to 'dice'. |
|
|
170 |
iterations (int, optional): [description]. Defaults to 25. |
|
|
171 |
labels (list, optional): [description]. Defaults to None. |
|
|
172 |
|
|
|
173 |
Raises: |
|
|
174 |
IOError: If no segmentations to be fused are passed |
|
|
175 |
|
|
|
176 |
Returns: |
|
|
177 |
array: a numpy array with the SIMPLE fusion result |
|
|
178 |
""" |
|
|
179 |
# manage empty calls |
|
|
180 |
num = len(candidates) |
|
|
181 |
if num == 0: |
|
|
182 |
print("ERROR! No segmentations to fuse.") |
|
|
183 |
raise IOError("No valid segmentations passed for SIMPLE Fusion") |
|
|
184 |
if self.verbose: |
|
|
185 |
print("Number of segmentations to be fused using SIMPLE is: ", num) |
|
|
186 |
# handle unpassed weights |
|
|
187 |
if weights == None: |
|
|
188 |
weights = itertools.repeat(1, num) |
|
|
189 |
backup_weights = weights # ugly save to reset weights after each round |
|
|
190 |
# get unique labels for multi-class fusion |
|
|
191 |
|
|
|
192 |
result = np.zeros(candidates[0].shape) |
|
|
193 |
labels = [2, 1, 4] |
|
|
194 |
logging.info("Fusing a segmentation with the labels: {}".format(labels)) |
|
|
195 |
# loop over each label |
|
|
196 |
for l in labels: |
|
|
197 |
if self.verbose: |
|
|
198 |
print("Currently fusing label {}".format(l)) |
|
|
199 |
# load first segmentation and use it to create initial numpy arrays IFF it contains labels |
|
|
200 |
if l == 2: |
|
|
201 |
# whole tumor |
|
|
202 |
bin_candidates = [(c > 0).astype(int) for c in candidates] |
|
|
203 |
elif l == 1: |
|
|
204 |
# tumor core |
|
|
205 |
bin_candidates = [((c == 1) | (c == 4)).astype(int) for c in candidates] |
|
|
206 |
else: |
|
|
207 |
# active tumor |
|
|
208 |
bin_candidates = [(c == 4).astype(int) for c in candidates] |
|
|
209 |
if self.verbose: |
|
|
210 |
print(bin_candidates[0].shape) |
|
|
211 |
# baseline estimate |
|
|
212 |
estimate = self._binaryMav(bin_candidates, weights) |
|
|
213 |
# initial convergence baseline |
|
|
214 |
conv = np.sum(estimate) |
|
|
215 |
# check if the estimate was reasonable |
|
|
216 |
if conv == 0: |
|
|
217 |
logging.error("Majority Voting in SIMPLE returned an empty array") |
|
|
218 |
# return np.zeros(candidates[0].shape) |
|
|
219 |
# reset tau before each iteration |
|
|
220 |
tau = t |
|
|
221 |
for i in range(iterations): |
|
|
222 |
t_weights = [] # temporary weights |
|
|
223 |
for c in bin_candidates: |
|
|
224 |
# score all canidate segmentations |
|
|
225 |
t_weights.append( |
|
|
226 |
(self._score(c, estimate, method) + 1) ** 2 |
|
|
227 |
) # SQUARED DICE! |
|
|
228 |
weights = t_weights |
|
|
229 |
# save maximum score in weights |
|
|
230 |
max_phi = max(weights) |
|
|
231 |
# remove dropout estimates |
|
|
232 |
bin_candidates = [ |
|
|
233 |
c for c, w in zip(bin_candidates, weights) if (w > t * max_phi) |
|
|
234 |
] |
|
|
235 |
# calculate new estimate |
|
|
236 |
estimate = self._binaryMav(bin_candidates, weights) |
|
|
237 |
# increment tau |
|
|
238 |
tau = tau + inc |
|
|
239 |
# check if it converges |
|
|
240 |
if np.abs(conv - np.sum(estimate)) < stop: |
|
|
241 |
if self.verbose: |
|
|
242 |
print( |
|
|
243 |
"Convergence for label {} after {} iterations reached.".format( |
|
|
244 |
l, i |
|
|
245 |
) |
|
|
246 |
) |
|
|
247 |
break |
|
|
248 |
conv = np.sum(estimate) |
|
|
249 |
# assign correct label to result |
|
|
250 |
result[estimate == 1] = l |
|
|
251 |
# reset weights |
|
|
252 |
weights = backup_weights |
|
|
253 |
if self.verbose: |
|
|
254 |
print("Shape of result:", result.shape) |
|
|
255 |
print("Shape of current input array:", bin_candidates[0].shape) |
|
|
256 |
print( |
|
|
257 |
"Labels and datatype of current output:", |
|
|
258 |
result.max(), |
|
|
259 |
result.min(), |
|
|
260 |
result.dtype, |
|
|
261 |
) |
|
|
262 |
return result |
|
|
263 |
|
|
|
264 |
def _simple( |
|
|
265 |
self, |
|
|
266 |
candidates, |
|
|
267 |
weights=None, |
|
|
268 |
t=0.05, |
|
|
269 |
stop=25, |
|
|
270 |
inc=0.07, |
|
|
271 |
method="dice", |
|
|
272 |
iterations=25, |
|
|
273 |
labels=None, |
|
|
274 |
): |
|
|
275 |
""" |
|
|
276 |
simple implementation using DICE scoring |
|
|
277 |
Iteratively estimates the accuracy of the segmentations and dynamically assigns weights |
|
|
278 |
for the next iteration. Continues for each label until convergence is reached. |
|
|
279 |
|
|
|
280 |
Args: |
|
|
281 |
candidates (list): [description] |
|
|
282 |
weights (list, optional): [description]. Defaults to None. |
|
|
283 |
t (float, optional): [description]. Defaults to 0.05. |
|
|
284 |
stop (int, optional): [description]. Defaults to 25. |
|
|
285 |
inc (float, optional): [description]. Defaults to 0.07. |
|
|
286 |
method (str, optional): [description]. Defaults to 'dice'. |
|
|
287 |
iterations (int, optional): [description]. Defaults to 25. |
|
|
288 |
labels (list, optional): [description]. Defaults to None. |
|
|
289 |
|
|
|
290 |
Raises: |
|
|
291 |
IOError: If no segmentations to be fused are passed |
|
|
292 |
|
|
|
293 |
Returns: |
|
|
294 |
array: a numpy array with the SIMPLE fusion result |
|
|
295 |
""" |
|
|
296 |
# manage empty calls |
|
|
297 |
num = len(candidates) |
|
|
298 |
if num == 0: |
|
|
299 |
print("ERROR! No segmentations to fuse.") |
|
|
300 |
raise IOError("No valid segmentations passed for SIMPLE Fusion") |
|
|
301 |
if self.verbose: |
|
|
302 |
print("Number of segmentations to be fused using SIMPLE is: ", num) |
|
|
303 |
# handle unpassed weights |
|
|
304 |
if weights == None: |
|
|
305 |
weights = itertools.repeat(1, num) |
|
|
306 |
backup_weights = weights # ugly save to reset weights after each round |
|
|
307 |
# get unique labels for multi-class fusion |
|
|
308 |
if labels == None: |
|
|
309 |
labels = np.unique(candidates[0]) |
|
|
310 |
for c in candidates: |
|
|
311 |
labels = np.append(labels, np.unique(c)) |
|
|
312 |
print( |
|
|
313 |
"Labels of current candidate: {}, dtype: {}".format( |
|
|
314 |
np.unique(c), c.dtype |
|
|
315 |
) |
|
|
316 |
) |
|
|
317 |
labels = np.unique(labels).astype(int) |
|
|
318 |
logging.warning( |
|
|
319 |
"No labels passed, choosing those labels automatically: {}".format( |
|
|
320 |
labels |
|
|
321 |
) |
|
|
322 |
) |
|
|
323 |
result = np.zeros(candidates[0].shape) |
|
|
324 |
# remove background label |
|
|
325 |
if 0 in labels: |
|
|
326 |
labels = np.delete(labels, 0) |
|
|
327 |
logging.info("Fusing a segmentation with the labels: {}".format(labels)) |
|
|
328 |
# loop over each label |
|
|
329 |
for l in sorted(labels): |
|
|
330 |
if self.verbose: |
|
|
331 |
print("Currently fusing label {}".format(l)) |
|
|
332 |
# load first segmentation and use it to create initial numpy arrays IFF it contains labels |
|
|
333 |
bin_candidates = [(c == l).astype(int) for c in candidates] |
|
|
334 |
if self.verbose: |
|
|
335 |
print(bin_candidates[0].shape) |
|
|
336 |
# baseline estimate |
|
|
337 |
estimate = self._binaryMav(bin_candidates, weights) |
|
|
338 |
# initial convergence baseline |
|
|
339 |
conv = np.sum(estimate) |
|
|
340 |
# check if the estimate was reasonable |
|
|
341 |
if conv == 0: |
|
|
342 |
logging.error("Majority Voting in SIMPLE returned an empty array") |
|
|
343 |
# return np.zeros(candidates[0].shape) |
|
|
344 |
# reset tau before each iteration |
|
|
345 |
tau = t |
|
|
346 |
for i in range(iterations): |
|
|
347 |
t_weights = [] # temporary weights |
|
|
348 |
for c in bin_candidates: |
|
|
349 |
# score all canidate segmentations |
|
|
350 |
t_weights.append( |
|
|
351 |
(self._score(c, estimate, method) + 1) ** 2 |
|
|
352 |
) # SQUARED DICE! |
|
|
353 |
weights = t_weights |
|
|
354 |
# save maximum score in weights |
|
|
355 |
max_phi = max(weights) |
|
|
356 |
# remove dropout estimates |
|
|
357 |
bin_candidates = [ |
|
|
358 |
c for c, w in zip(bin_candidates, weights) if (w > t * max_phi) |
|
|
359 |
] |
|
|
360 |
# calculate new estimate |
|
|
361 |
estimate = self._binaryMav(bin_candidates, weights) |
|
|
362 |
# increment tau |
|
|
363 |
tau = tau + inc |
|
|
364 |
# check if it converges |
|
|
365 |
if np.abs(conv - np.sum(estimate)) < stop: |
|
|
366 |
if self.verbose: |
|
|
367 |
print( |
|
|
368 |
"Convergence for label {} after {} iterations reached.".format( |
|
|
369 |
l, i |
|
|
370 |
) |
|
|
371 |
) |
|
|
372 |
break |
|
|
373 |
conv = np.sum(estimate) |
|
|
374 |
# assign correct label to result |
|
|
375 |
result[estimate == 1] = l |
|
|
376 |
# reset weights |
|
|
377 |
weights = backup_weights |
|
|
378 |
if self.verbose: |
|
|
379 |
print("Shape of result:", result.shape) |
|
|
380 |
print("Shape of current input array:", bin_candidates[0].shape) |
|
|
381 |
print( |
|
|
382 |
"Labels and datatype of current output:", |
|
|
383 |
result.max(), |
|
|
384 |
result.min(), |
|
|
385 |
result.dtype, |
|
|
386 |
) |
|
|
387 |
return result |
|
|
388 |
|
|
|
389 |
def _dirFuse(self, directory, method="mav", outputPath=None, labels=None): |
|
|
390 |
""" |
|
|
391 |
dirFuse [summary] |
|
|
392 |
|
|
|
393 |
Args: |
|
|
394 |
directory ([type]): [description] |
|
|
395 |
method (str, optional): [description]. Defaults to 'mav'. |
|
|
396 |
outputName ([type], optional): [description]. Defaults to None. |
|
|
397 |
""" |
|
|
398 |
if method == "all": |
|
|
399 |
return |
|
|
400 |
candidates = [] |
|
|
401 |
weights = [] |
|
|
402 |
temp = None |
|
|
403 |
for file in os.listdir(directory): |
|
|
404 |
if file.endswith(".nii.gz"): |
|
|
405 |
# skip existing fusions |
|
|
406 |
if "fusion" in file: |
|
|
407 |
continue |
|
|
408 |
temp = op.join(directory, file) |
|
|
409 |
try: |
|
|
410 |
candidates.append(oitk.get_itk_array(oitk.get_itk_image(temp))) |
|
|
411 |
weights.append(1) |
|
|
412 |
print("Loaded: " + os.path.join(directory, file)) |
|
|
413 |
except Exception as e: |
|
|
414 |
print( |
|
|
415 |
"Could not load this file: " |
|
|
416 |
+ file |
|
|
417 |
+ " \nPlease check if this is a valid path and that the files exists. Exception: " |
|
|
418 |
+ e |
|
|
419 |
) |
|
|
420 |
if method == "mav": |
|
|
421 |
print( |
|
|
422 |
"Orchestra: Now fusing all .nii.gz files in directory {} using MAJORITY VOTING. For more output, set the -v or --verbose flag or instantiate the fusionator class with verbose=true".format( |
|
|
423 |
directory |
|
|
424 |
) |
|
|
425 |
) |
|
|
426 |
result = self._mav(candidates, labels, weights) |
|
|
427 |
elif method == "simple": |
|
|
428 |
print( |
|
|
429 |
"Orchestra: Now fusing all .nii.gz files in directory {} using SIMPLE. For more output, set the -v or --verbose flag or instantiate the fusionator class with verbose=true".format( |
|
|
430 |
directory |
|
|
431 |
) |
|
|
432 |
) |
|
|
433 |
result = self._simple(candidates, weights) |
|
|
434 |
elif method == "brats-simple": |
|
|
435 |
print( |
|
|
436 |
"Orchestra: Now fusing all .nii.gz files in directory {} using BRATS-SIMPLE. For more output, set the -v or --verbose flag or instantiate the fusionator class with verbose=true".format( |
|
|
437 |
directory |
|
|
438 |
) |
|
|
439 |
) |
|
|
440 |
result = self._brats_simple(candidates, weights) |
|
|
441 |
try: |
|
|
442 |
if outputPath == None: |
|
|
443 |
oitk.write_itk_image( |
|
|
444 |
oitk.make_itk_image(result, proto_image=oitk.get_itk_image(temp)), |
|
|
445 |
op.join(directory, method + "_fusion.nii.gz"), |
|
|
446 |
) |
|
|
447 |
else: |
|
|
448 |
outputDir = op.dirname(outputPath) |
|
|
449 |
os.makedirs(outputDir, exist_ok=True) |
|
|
450 |
oitk.write_itk_image( |
|
|
451 |
oitk.make_itk_image(result, proto_image=oitk.get_itk_image(temp)), |
|
|
452 |
outputPath, |
|
|
453 |
) |
|
|
454 |
logging.info( |
|
|
455 |
"Segmentation Fusion with method {} saved in directory {}.".format( |
|
|
456 |
method, directory |
|
|
457 |
) |
|
|
458 |
) |
|
|
459 |
except Exception as e: |
|
|
460 |
print("Very bad, this should also be logged somewhere: " + str(e)) |
|
|
461 |
logging.exception( |
|
|
462 |
"Issues while saving the resulting segmentation: {}".format(str(e)) |
|
|
463 |
) |
|
|
464 |
|
|
|
465 |
def fuse(self, segmentations, outputPath, method="mav", weights=None, labels=None): |
|
|
466 |
""" |
|
|
467 |
fuse [summary] |
|
|
468 |
|
|
|
469 |
Args: |
|
|
470 |
segmentations ([type]): [description] |
|
|
471 |
outputPath ([type]): [description] |
|
|
472 |
method (str, optional): [description]. Defaults to 'mav'. |
|
|
473 |
weights ([type], optional): [description]. Defaults to None. |
|
|
474 |
|
|
|
475 |
Raises: |
|
|
476 |
IOError: [description] |
|
|
477 |
""" |
|
|
478 |
candidates = [] |
|
|
479 |
if weights is not None: |
|
|
480 |
if len(weights) != len(segmentations): |
|
|
481 |
raise IOError( |
|
|
482 |
"Please pass a matching number of weights and segmentation files" |
|
|
483 |
) |
|
|
484 |
w_weights = weights |
|
|
485 |
else: |
|
|
486 |
w_weights = [] |
|
|
487 |
for seg in segmentations: |
|
|
488 |
if seg.endswith(".nii.gz"): |
|
|
489 |
try: |
|
|
490 |
candidates.append(oitk.get_itk_array(oitk.get_itk_image(seg))) |
|
|
491 |
if weights is None: |
|
|
492 |
w_weights.append(1) |
|
|
493 |
print("Loaded: " + seg) |
|
|
494 |
except Exception as e: |
|
|
495 |
print( |
|
|
496 |
"Could not load this file: " |
|
|
497 |
+ seg |
|
|
498 |
+ " \nPlease check if this is a valid path and that the files exists. Exception: " |
|
|
499 |
+ str(e) |
|
|
500 |
) |
|
|
501 |
raise |
|
|
502 |
if method == "mav": |
|
|
503 |
print( |
|
|
504 |
"Orchestra: Now fusing all passed .nii.gz files using MAJORITY VOTING. For more output, set the -v or --verbose flag or instantiate the fusionator class with verbose=true" |
|
|
505 |
) |
|
|
506 |
result = self._mav(candidates, labels=labels, weights=w_weights) |
|
|
507 |
elif method == "simple": |
|
|
508 |
print( |
|
|
509 |
"Orchestra: Now fusing all passed .nii.gz files in using SIMPLE. For more output, set the -v or --verbose flag or instantiate the fusionator class with verbose=true" |
|
|
510 |
) |
|
|
511 |
result = self._simple(candidates, w_weights) |
|
|
512 |
elif method == "brats-simple": |
|
|
513 |
print( |
|
|
514 |
"Orchestra: Now fusing all .nii.gz files in directory {} using BRATS-SIMPLE. For more output, set the -v or --verbose flag or instantiate the fusionator class with verbose=true" |
|
|
515 |
) |
|
|
516 |
result = self._brats_simple(candidates, w_weights) |
|
|
517 |
try: |
|
|
518 |
outputDir = op.dirname(outputPath) |
|
|
519 |
os.makedirs(outputDir, exist_ok=True) |
|
|
520 |
oitk.write_itk_image( |
|
|
521 |
oitk.make_itk_image(result, proto_image=oitk.get_itk_image(seg)), |
|
|
522 |
outputPath, |
|
|
523 |
) |
|
|
524 |
logging.info( |
|
|
525 |
"Segmentation Fusion with method {} saved as {}.".format( |
|
|
526 |
method, outputPath |
|
|
527 |
) |
|
|
528 |
) |
|
|
529 |
except Exception as e: |
|
|
530 |
print("Very bad, this should also be logged somewhere: " + str(e)) |
|
|
531 |
logging.exception( |
|
|
532 |
"Issues while saving the resulting segmentation: {}".format(str(e)) |
|
|
533 |
) |
|
|
534 |
|
|
|
535 |
def _score(self, seg, gt, method="dice"): |
|
|
536 |
"""Calculates a similarity score based on the |
|
|
537 |
method specified in the parameters |
|
|
538 |
Input: Numpy arrays to be compared, need to have the |
|
|
539 |
same dimensions (shape) |
|
|
540 |
Default scoring method: DICE coefficient |
|
|
541 |
method may be: 'dice' |
|
|
542 |
'auc' |
|
|
543 |
'bdice' |
|
|
544 |
returns: a score [0,1], 1 for identical inputs |
|
|
545 |
""" |
|
|
546 |
try: |
|
|
547 |
# True Positive (TP): we predict a label of 1 (positive) and the true label is 1. |
|
|
548 |
TP = np.sum(np.logical_and(seg == 1, gt == 1)) |
|
|
549 |
# True Negative (TN): we predict a label of 0 (negative) and the true label is 0. |
|
|
550 |
TN = np.sum(np.logical_and(seg == 0, gt == 0)) |
|
|
551 |
# False Positive (FP): we predict a label of 1 (positive), but the true label is 0. |
|
|
552 |
FP = np.sum(np.logical_and(seg == 1, gt == 0)) |
|
|
553 |
# False Negative (FN): we predict a label of 0 (negative), but the true label is 1. |
|
|
554 |
FN = np.sum(np.logical_and(seg == 0, gt == 1)) |
|
|
555 |
FPR = FP / (FP + TN) |
|
|
556 |
FNR = FN / (FN + TP) |
|
|
557 |
TPR = TP / (TP + FN) |
|
|
558 |
TNR = TN / (TN + FP) |
|
|
559 |
except ValueError: |
|
|
560 |
print("Value error encountered!") |
|
|
561 |
return 0 |
|
|
562 |
# faster dice? Oh yeah! |
|
|
563 |
if method == "dice": |
|
|
564 |
# default dice score |
|
|
565 |
score = 2 * TP / (2 * TP + FP + FN) |
|
|
566 |
elif method == "auc": |
|
|
567 |
# AUC scoring |
|
|
568 |
score = 1 - (FPR + FNR) / 2 |
|
|
569 |
elif method == "bdice": |
|
|
570 |
# biased dice towards false negatives |
|
|
571 |
score = 2 * TP / (2 * TP + FN) |
|
|
572 |
elif method == "spec": |
|
|
573 |
# specificity |
|
|
574 |
score = TN / (TN + FP) |
|
|
575 |
elif method == "sens": |
|
|
576 |
# sensitivity |
|
|
577 |
score = TP / (TP + FN) |
|
|
578 |
elif method == "toterr": |
|
|
579 |
score = (FN + FP) / (155 * 240 * 240) |
|
|
580 |
elif method == "ppv": |
|
|
581 |
prev = np.sum(gt) / (155 * 240 * 240) |
|
|
582 |
temp = TPR * prev |
|
|
583 |
score = (temp) / (temp + (1 - TNR) * (1 - prev)) |
|
|
584 |
else: |
|
|
585 |
score = 0 |
|
|
586 |
if np.isnan(score) or math.isnan(score): |
|
|
587 |
score = 0 |
|
|
588 |
return score |